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Research on atomic Bose-Einstein condensates is driven by
the continuously-renewed experimental capability of engineering new

interactions and trap configurations.
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◦ Superfluid BKT transition

◦ Hydrodynamic excitations

◦ Thermodynamics
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Experimentally realizable...in microgravity

Bubble-trap...

bare picture: trap+rf
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[Lundblad et al., npj Microgravity 5, 30 (2019)]

...on Earth

[Colombe et al., EPL 67, 593 (2004)]

⇒ Experiments on NASA-JPL Cold Atom Lab
[Elliott et al., npj Microgravity 4, 16 (2018)]

[Aveline et al., Nature 582, 193 (2020)]



Berezinskii-Kosterlitz-Thouless transition – infinite flat case

superfluid normal fluid

BKT mechanism:
unbinding of vortex-antivortex

dipoles at T = TBKT

suppresses the superfluidity

Adimensional parameters
K(`) = ~2ns (`)

mkBT
; y(`)

RG scale ` = ln(r/ξ),

Distance between vortices: r ∈ [ξ,∞]

[Nelson, Kosterlitz, PRL 39, 1201 (1977)]

RG equations of a flat superfluid

dK−1(`)

d`
= −4π3y2(`)

dy(`)

d`
= [2− πK (`)] y(`)

→ From bare ns(` = 0) = n
(0)
s

to renormalized ns = ns(` =∞)
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Is the vortex-antivortex unbinding the driving BKT
mechanism also in shell-shaped condensates?



BKT transition – shell-shaped BECs

Let us assume the same mechanism and derive the consequences

RG equations of a spherical superfluid

dK−1(θ)

d`(θ)
= −4π3y2(θ)

dy(θ)

d`(θ)
= [2− πK (θ)] y(θ)

RG scale?

`(θ) = ln[2R sin(θ/2)/ξ]

Distance between vortices:
2R sin(θ/2) ∈ [ξ, 2R]...

...but in 3D space!!

[AT, Pelster, Salasnich,

arXiv:2104.04585]



BKT transition – shell-shaped BECs

Finite system size ⇒ smooth
vanishing of ns

and finite-size BKT scaling:

Tin ∼ n ∆T/Tin ∝ ln−2(R/ξ)

[AT, Pelster, Salasnich, arXiv:2104.04585]



Qualitative proof of BKT in shells

In flat superfluids:
vortex proliferation at TBKT

⇒ “wavy” interference pattern

In superfluid shells,
free expansion at T = 0

...and a “wavy” pattern at TBKT

[Hadzibabic et al. Nature 441, 1118 (2006)] [AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

But how can we study quantitatively the BKT transition?



Hydrodynamic modes

Response of a finite-temperature superfluid to a small perturbation:

Flat case:
ordinary first and second sound

(basis: plane waves e i(kx−ωt))

Shell BECs:
hydrodynamic modes ω1, ω2

(basis: spherical harmonics Yml
l e iωt)

ω1, ω2 are the main quantitative probe of BKT physics

[AT, Pelster, Salasnich, arXiv:2104.04585]



Thermodynamics

Following [AT, Salasnich,

PRL 123, 160403 (2019)],
we calculate the

renormalized grand
potential

Ω

4πR2
= − mµ2

8π~2

[
ln

(
4~2

m(EB
1 + ε1 + µ)a2 e2γ+1

)
+

1

2

]
+
mEB

1

8π~2
(EB

1 − ε1 − µ) +
1

4πR2

1

β

∞∑
l=1

l∑
ml=−l

ln
(

1 − e−βE
B
l

)
,

from which we calculate all
the thermodynamic functions

While the hydrodynamic excitations are non-monotonic around TBKT,
the thermodynamic functions are unaffected by BKT

[AT, Pelster, Salasnich, arXiv:2104.04585]
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Experimental relevance of finite-temperature properties

Are these predictions experimentally relevant? Yes!

For the realistic trap parameters of
NASA-JPL CAL experiment:

TBEC drops quickly
with ∆ ∝ shell area
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[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

Difficult to reach fully-condensate regime...
⇒ Finite-temperature properties and BKT physics are highly relevant



In conclusion

We assume the vortex-antivortex unbinding as the driving
BKT mechanism in shell-shaped condensates,

and derive the observable consequences:

– “wavy” imaging pattern

– hydrodynamic modes (vs continuous thermodynamics)

Finite-size BKT ↔ curvature of quantum gases

Shell BECs ↔ platform to study finite-size BKT



Thank you for your attention!
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