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Research on atomic Bose-Einstein condensates is driven by
the continuously-renewed experimental capability of engineering new
interactions and trap configurations.
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Experimentally realizable...in microgravity

Bubble-trap... ...on Earth

shell

potential energy U(r)
potential energy U(r)

position (1D cut) position (1D cut)
[Lundblad et al., npj Microgravity 5, 30 (2019)]

= Experiments on NASA-JPL
[Elliott et al., npj Microgravity 4, 16 (2018)]
[Aveline et al., Nature 582, 193 (2020)]
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Berezinskii-Kosterlitz- Thouless transition — infinite flat case

BKT mechanism:
unbinding of vortex-antivortex
dipoles at T = TgkT
suppresses the superfluidity



Berezinskii-Kosterlitz- Thouless transition — infinite flat case
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Adimensional parameters

2,
K(e) =" y(0)

RG scale ¢ = In(r/¢),

Distance between vortices: r € [£, oo]

[Nelson, Kosterlitz, PRL 39, 1201 (1977)]

BKT mechanism:
unbinding of vortex-antivortex
dipoles at T = TgkT
suppresses the superfluidity

RG equations of a flat superfluid

dK=1(0)

T —47T3y2(€)
dy(4) _
7 [2 —7K(0)]y(¢)

— From bare ns(¢ =0) = n®

to renormalized ng = ns(¢ = 00)



Is the vortex-antivortex unbinding the driving BKT
mechanism also in shell-shaped condensates?



BKT transition — shell-shaped BECs

Let us assume the same mechanism and derive the consequences

RG scale?

RG equations of a spherical superfluid 0(0) = In[2Rsin(0/2)/¢]

Distance between vortices:

W _ _43%(0) 2Rsin(6/2) € [€, 2R]...
dy(0) ...but in 3D space!!
m =[2—7K(0)] y(0)

[AT, Pelster, Salasnich,
arXiv:2104.04585]



BKT transition — shell-shaped BECs

Finite system size = smooth

kpT/(h*n/m)

vanishing of ng
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[AT, Pelster, Salasnich, arXiv:2104.04585]



Qualitative proof of BKT in shells

In flat superfluids: In superfluid shells,
vortex proliferation at TgkTt free expansion at T =0
= “wavy" interference pattern
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...and a “wavy" pattern at TgkT
[Hadzibabic et al. Nature 441, 1118 (2006)] [AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

But how can we study quantitatively the BKT transition?



Hydrodynamic modes

Response of a finite-temperature superfluid to a small perturbation:

Flat case: Shell BECs:
ordinary first and second sound hydrodynamic modes wi, w»
(basis: plane waves e/(F<—1)) (basis: spherical harmonics Y™ e'“’")
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w1, wp are the main quantitative probe of BKT physics
[AT, Pelster, Salasnich, arXiv:2104.04585]



Thermodynamics

Following [AT, Salasnich,
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Thermodynamics

Following [AT, Salasnich,

Q  omyd | 412 1
PRL 123, 160403 (2019)], R~ e | "\ B T a e +5
we calculate the

oo I
. mEl‘B B 1 1 _BEB
renormalized grand + (B —e1—p) + o ) |n(1 — e PE )

. 87h?
potential T I=1 my=—1

from which we calculate all
the thermodynamic functions

-10 Q/(NE,)
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T nK]
While the hydrodynamic excitations are non-monotonic around TgkrT,

the thermodynamic functions are unaffected by BKT

[AT, Pelster, Salasnich, arXiv:2104.04585]



Experimental relevance of finite-temperature properties

Are these predictions experimentally relevant? Yes!

harmonic trap

150 —
For the realistic trap parameters of o 120 N =10x107 - =~ |
NASA-JPL CAL experiment: S o} .
E 60 "shell BEC —————— -
Tgec drops quickly -
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[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

Difficult to reach fully-condensate regime...
= Finite-temperature properties and BKT physics are highly relevant



In conclusion

We assume the vortex-antivortex unbinding as the driving
BKT mechanism in shell-shaped condensates,

and derive the observable consequences:

— “wavy" imaging pattern

— hydrodynamic modes (vs continuous thermodynamics)

Finite-size BK'T <» curvature of quantum gases

Shell BECs <> platform to study finite-size BK'T



Thank you for your attention!



References

ﬁ A. Tononi, F. Cinti, and L. Salasnich, Quantum Bubbles in Microgravity, Physical
Review Letters 125, 010402 (2020).

ﬁ A. Tononi and L. Salasnich, Bose-Einstein Condensation on the Surface of a
Sphere, Physical Review Letters 123, 160403 (2019).

ﬁ A. Tononi, A. Pelster, and L. Salasnich, arXiv:2104.04585


https://doi.org/10.1103/PhysRevLett.123.160403
https://doi.org/10.1103/PhysRevLett.123.160403

