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The system

Ĥ =

∫ (
−Ψ̂†x∂2

x Ψ̂x

2M
− φ̂†x∂

2
x φ̂x

2m
+ gΨ̂†x φ̂

†
x Ψ̂x φ̂x

)
dx , g < 0

N heavy fermions of mass M
1 light atom of mass m

Noninteracting heavy

heavy-light attraction
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How many heavy fermions can be bound by
a single light atom in 1D?

Competition between:

I Kinetic energy of heavy atoms ∼ 1/M

I (Effective) attractive heavy-heavy potential, mediated by the
exchange of the light atom ∼ 1/m
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The (N+1)-body problem

A well posed problem (clear question), with few simple parameters

I spatial dimension D = 1,

I scattering length a

I mass ratio M/m,

I number of heavy atoms N

relevant for experiments with
mass and density-imbalanced

fermionic mixtures
173Yb–6Li, 53Cr–6Li,
40K–6Li, 161Dy–40K [Ravensbergen et al, PRA 98, 063624 (2018)]
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2+1 (trimer) in the 3D Born-Oppenheimer picture

Light atom in the field of fixed
heavy fermions

(distance R = |~R2 − ~R1|)

−
~2∇2

~r

2m
φR(~r) = ε(R)φR(~r), φR(~r → ~Ri/2) ∝ 1

|~r − ~Ri/2|
− 1

a

Small R:

ε+,m(R) ∼ − ~2

mR2

Large R:

ε+,m(R) ∼ ε0, dimer energy

[D. S. Petrov, arXiv:1206.5752]
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2+1 (trimer) in the 3D Born-Oppenheimer picture

Schrödinger equation for heavy atom with reduced mass M/2 in
the effective potential:[

−~2

M

∂2

∂R2
+Ueff (R)−E

]
χ(R) = 0, Ueff (R) =

~2l(l + 1)

MR2
+ε+,m(R)+|ε0|

The light-mediated effective heavy-heavy potential is “tuned” by
M/m:

The effective
heavy-heavy
interaction
Ueff (R) =

l(l+1)
MR2 + ε+(R), and
is tuned by M/m
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Binding in 1D

As in 3D, there is a competition between heavy-heavy kinetic
energy and light-mediated heavy-heavy attraction.

State of the art in 1D:

I Trimer (2+1 atoms) at M/m ≥ 1 (red dashed curve)
[Kartavtsev, et al. JETP 108, 365 (2009)]

I Tetramer (3+1 atoms) through Born-Oppenheimer treatment
(lowest black curve)
[Mehta, PRA 89, 052706 (2014)]
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Our results
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We provide the exact
solution of the quantum
mechanical problem up

to N = 5.

(N = 2, 3, 4, 5 here)

We identify the critical mass ratios:

(M/m)2+1 = 1,

(M/m)3+1 = 1.76,

(M/m)4+1 = 4.2,

(M/m)5+1 = 12.0± 0.5

[A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018]
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Exact results: the Skorniakov-Ter Martirosian equation

Schrödinger equation for a system of N heavy plus 1 light fermions:[
−

N∑
i=1

∂2
xi

2M
−
∂2

xN+1

2m
+ g

∑
i<N+1

δ(xi − xN+1)− E

]
ψ(x1, ..., xN , xN+1) = 0,

where E < 0, and g = −1/(mra) < 0, mr = mM/(m + M).

Wave function of (N − 1) fermions plus a dimer:
ψ(x1, ..., xN−1, xN , xN+1 = xN)

Fourier transform: F (q1, ..., qN−1, qN)

In center of mass coordinates qN = −
∑N

i=1 qi we have:
F (q1, ..., qN−1)
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Exact results: the Skorniakov-Ter Martirosian equation

F (q1, ..., qN−1) satisfies the STM equation

[
a

2
−

1

2κ(q1, ..., qN−1)

]
F (q1, ..., qN−1) = −

∫
dp

2π

∑N−1
j=1 F (q1, ..., qj−1, p, qj+1, ..., qN−1)

κ2(q1, ..., qN−1) + (p + mr
m

∑N−1
i=1 qi )2

,

where κ(q1, ...qN−1) =
√

−2mrE + mr
M+m

(
∑N−1

i=1 qi )2 + mr
M

∑N−1
i=1 q2

i .

[Skorniakov, Ter-Martirosian, JETP 4, 648 (1957)]

[Pricoupenko, Petrov, PRA 100, 042707 (2019)]

Integro-differential equation that includes naturally zero-range
interactions, and removes the dimer coordinates.
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Exact results: the Skorniakov-Ter Martirosian equation

The exact solution of the STM equation gives the energies
(continuous lines) of the N + 1 clusters:
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We also find that the trimer and tetramer have P = −1, while
pentamer and hexamer have P = +1
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Two questions

I Large N limit?

I Are there computationally-cheap methods that
work also at small N?
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Thomas-Fermi approach

Large N limit: mean-field theory based on the Thomas-Fermi
approximation for the heavy fermions

Ω =

∫ [
|φ′(x)|2

2m
+gn(x)|φ(x)|2 +

π2n3(x)

6M
− ε|φ(x)|2−µn(x)

]
dx ,

minimizing Ω wrt φ and n: −φ′′1(x)− 2mgn(x)φ1(x) = 2mεφ1(x),

n(x) =
√
−2Mg(|φ(x)|2 − µ/g)/π2, when |φ(x)|2 > µ/g .

When µ = 0 (threshold for binding a new heavy atom), analytical:

φ(x) =
−3πε√
−8Mg3

1

cosh2(
√
−mε/2x)

n(x) =
√
−2Mg/π2 |φ(x)|

Threshold:
(

M
m

)
N+1

= π2

36
N3

-10 -5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0
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Thomas-Fermi approach

We extend the theory for µ 6= 0, and calculate cluster energies.

Thomas-Fermi approach (grey curves), analytical, computationally
cheap, works at large N:
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results? TF, mean field?
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Hartree-Fock approach

Ĥ =

∫ (
−Ψ̂†x∂2

x Ψ̂x

2M
− φ̂†x∂

2
x φ̂x

2m
+ gΨ̂†x φ̂

†
x Ψ̂x φ̂x

)
dx

Energy EN+1 = 〈v | Ĥ |v〉, with the variational ansatz:

|v〉 =
∫
dxφ1(x)φ̂†x

∫
dx1...dxN

det[Ψν(xη)]√
N!

∏N
η=1 Ψ̂†xη |0〉

Minimizing EN+1 − ε1 − µN with respect to the orbitals yields:

−∂
2
xφ1

2m
+ gn φ1 = ε1φ1,

−∂
2
x Ψν

2M
+ g |φ1|2Ψν = EνΨν ,

n =
N∑
ν=1

|Ψν |2
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Hartree-Fock approach

→ No improvement wrt TF energies (dashed lines)
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N − 1 atoms momentum distribution

All methods give access to the following quantity:

ρN+1(q) =

∫
|F (q, q2, ..., qN−1)|2 dq2...dqN−1,

that can be used to compare their effectiveness at small N.

We find that Hartree-Fock reproduces very well these momentum
correlations:
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Conclusions and perspectives

Binding of N heavy fermions by a light atom:
for larger mass ratio more atoms can be bound.

(very different from 3D, where there are no bound states for
M/m > 13.6, meaning no 6+1 clusters!)

– Exact results up to N = 5

– TF theory: analytical and works for large N

– HF theory: reproduces well energy and correlations at
small and large N

Possible generalization to other setups:

– higher dimensions – more particles
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