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Competition between:
» Kinetic energy of heavy atoms ~ 1/M
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A well posed problem (clear question), with few simple parameters
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> scattering length a » number of heavy atoms N
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2+1 (trimer) in the 3D Born-Oppenheimer picture
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2+1 (trimer) in the 3D Born-Oppenheimer picture
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2+1 (trimer) in the 3D Born-Oppenheimer picture

Schrodinger equation for heavy atom with reduced mass M/2 in
the effective potential:

K2 o2 R2I(1+ 1)

M 8R2+Ueff(R) (R) =0, Ueff(R) = VIR2 +6+,m(R)+|60|



2+1 (trimer) in the 3D Born-Oppenheimer picture

Schrodinger equation for heavy atom with reduced mass M/2 in
the effective potential:

K2 o2 R+ 1)

_Mw‘i_ueff(R)—E X(R) = O, Ueff(R) = W+6+’m(R)+‘60|
The light-mediated effective heavy-heavy potential is “tuned” by
M/ m:
U(,ﬁ'(R) . M/m=5

lel M/m=40/6~6.7 p-wave scattering resonance

01F
0.0
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- M/m=82 “universal” trimer state

\ [Kartavtsev & Malykh'06]
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o M/m>13.6 many trimer (Efimov) states [Efimov'73]
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Binding in 1D

As in 3D, there is a competition between heavy-heavy kinetic
energy and



Binding in 1D
As in 3D, there is a competition between heavy-heavy kinetic
energy and
State of the art in 1D:

» Trimer (2+1 atoms) at M/m > 1 (red dashed curve)
[Kartavtsev, et al. JETP 108, 365 (2009)]

» Tetramer (3+1 atoms) through Born-Oppenheimer treatment
(lowest black curve)
[Mehta, PRA 89, 052706 (2014)]
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Our results
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We provide the exact
solution of the quantum
mechanical problem up
to N =5.

(N =2,3,4,5 here)

[A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018]
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Our results
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We identify the critical mass ratios:

(M/m)241 =1,
(M/m)3+1 = 176,

(M/m)asy = 4.2,
(M/m)ss1 =12.040.5

[A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018]
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Exact results: the Skorniakov-Ter Martirosian equation

Schrodinger equation for a system of NV heavy plus 1 light fermions:

02 02

N
_Z 2;\(}1 - ;NJrl + Z 5 _XN+1 ¢(X17 "'7XN7XN+1) = 07

i=1 i<N+1
where E <0, and g = —1/(m,a) <0, m, = mM/(m+ M).
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Exact results: the Skorniakov-Ter Martirosian equation
Schrodinger equation for a system of NV heavy plus 1 light fermions:
Nog2 o2

_Z W - % +g Z 6(Xi _XN+1) —-E w(xla "'aXN7XN+1) = 07
i=1 i<N+1

where E <0, and g = —1/(m,a) <0, m, = mM/(m+ M).

Wave function of (N — 1) fermions plus a dimer:
Y(X1, o XN—15 XN, XN+1 = XN)
Fourier transform: F(q1,...,qn_1, qn)

In center of mass coordinates qy = — Z,N:1 g; we have:
F(q17 ceey qN—l)

g2 g3

qi
-—@ - - -

—q1—q2—q3
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Exact results: the Skorniakov-Ter Martirosian equation

F(q1,...,qn—1) satisfies the STM equation

F . 1 } (@) = _/@ZJ'N:_].I F(q1, s Gj—1, P, Gjr1s -+ AN—1)
2 2’%(‘717"'7‘7/\/ 1) T 2m K‘Z(qll“':qul)J’_(p_'— %ZINZ_II q")z,

where k(q1,...qn-1) = \/ 2m.E + M+m(2 ' ql)2+ m, ZNlquQ

[Skorniakov, Ter-Martirosian, JETP 4, 648 (1957)]
[Pricoupenko, Petrov, PRA 100, 042707 (2019)]

Integro-differential equation that includes naturally zero-range
interactions, and removes the dimer coordinates.
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Exact results: the Skorniakov-Ter Martirosian equation

The exact solution of the STM equation gives the energies
(continuous lines) of the N + 1 clusters:
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We also find that the trimer and tetramer have P = —1, while
pentamer and hexamer have P = +1
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Two questions

» Large N limit?

» Are there computationally-cheap methods that
work also at small N7
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Thomas-Fermi approach

Large N limit: mean-field theory based on the Thomas-Fermi
approximation for the heavy fermions

Q- /{W +gn(100) P+ ) (02 — un()| i,
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Large N limit: mean-field theory based on the Thomas-Fermi
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Thomas-Fermi approach

Large N limit: mean-field theory based on the Thomas-Fermi
approximation for the heavy fermions

Q- /{W +gn(100) P+ ) (02 — un()| i,

minimizing Q wrt ¢ and n: —@] (x) — 2mgn(x)¢1(x) = 2meep1(x),
= V/=2Mg(|¢(x)]? — u/g)/m?, when [¢(x)]* > p/g.

When 1 = 0 (threshold for binding a new heavy atom), analytical:

1.0

—3me 1

P = \/—8Mg?3 cosh?(/—me/2x)
=/ —2Mg/m?|$(x)

2

Threshold: (1), = IV
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o(z)/do, n(x)a
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Thomas-Fermi approach

We extend the theory for i # 0, and calculate cluster energies.
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Thomas-Fermi approach

We extend the theory for i # 0, and calculate cluster energies.

Thomas-Fermi approach (grey curves), analytical, computationally
cheap, works at large N:
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Thomas-Fermi approach

We extend the theory for i # 0, and calculate cluster energies.

Thomas-Fermi approach (grey curves), analytical, computationally
cheap, works at large N:
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What is the main source of discrepancy with the small-N exact
results? TF, mean field?
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Hartree-Fock approach

oo / (_ Vo2l plo2d.
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Energy Ens1 = (v| H|v), with the variational ansatz:
2 det[W, (xy, N 7,
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Hartree-Fock approach

. \])T82ﬁ; "Ta2" VA
H:/ <_ o X2,§,¢X+gwi¢1wx¢x dx

Energy Ens1 = (v| H|v), with the variational ansatz:
2 det[W, (xy, N 7,
= [ dxn(x)oL [ da...cxy LTI W (o)

Minimizing Eny1 — €1 — /N with respect to the orbitals yields:
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Hartree-Fock

approach

— No improvement wrt TF energies (dashed lines)
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Hartree-Fock approach

— No improvement wrt TF energies (dashed lines)
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N — 1 atoms momentum distribution

All methods give access to the following quantity:

PN+1(q) :/F(q7q2a"'7qN—1)|2 dQ2---dCIN—1>

that can be used to compare their effectiveness at small N.

21



N — 1 atoms momentum distribution

All methods give access to the following quantity:

PN+1(q) :/F(q7q27"'7qN—1)|2 dQ2---dCIN—1>

that can be used to compare their effectiveness at small N.

We find that Hartree-Fock reproduces very well these momentum
correlations:
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Conclusions and perspectives

Binding of N heavy fermions by a light atom:
for larger mass ratio more atoms can be bound.

(very different from 3D, where there are no bound states for
M/m > 13.6, meaning no 6+1 clusters!)
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Conclusions and perspectives

Binding of N heavy fermions by a light atom:
for larger mass ratio more atoms can be bound.

(very different from 3D, where there are no bound states for
M/m > 13.6, meaning no 6+1 clusters!)
— Exact results upto N =5
— TF theory: analytical and works for large N

— HF theory: reproduces well energy and correlations at
small and large N

Possible generalization to other setups:

— higher dimensions — more particles
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