Topological BKT transition in
bubble-trapped condensates

Andrea Tononi

Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita di Padova

SuperFluctuations 2021

Free-fall orbit_ - -~~~ -

Earth surface

Based on This presentation on
[AT, Pelster, Salasnich, arXiv:2104.04585] www.andreatononi.com


www.andreatononi.com

Research on atomic Bose-Einstein condensates is driven by
the continuously-renewed experimental capability of engineering
interatomic interactions and trap configurations.
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Bubble-trapped BEC

| will discuss:

o BKT transition: flat case vs spherical shell

o Hydrodynamic excitations, thermodynamics



Experimentally realizable

Bubble-trap...

bare picture: trap+rf dressed (adiabatic) picture
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[Lundblad et al., npj Microgravity 5, 30 (2019)]



Bubble-trap (rf-induced adiabatic potential)
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Experimentally realizable

Bubble-trap...
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Experimentally realizable

Bubble-trap... ...on Earth
shell
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[Lundblad et al., npj Microgravity 5, 30 (2019)] [Colombe et al., EPL 67, 593 (2004)]



Experimentally realizable

Bubble-trap... ...on Earth
shell
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[Lundblad et al., npj Microgravity 5, 30 (2019)] [Colombe et al., EPL 67, 593 (2004)]

= Experiments on NASA-JPL

[Elliott et al., npj Microgravity 4, 16 (2018)]
[Aveline et al., Nature 582, 193 (2020)]




Berezinskii-Kosterlitz-Thouless transition — infinite flat case

Vortex-antivortex dipoles at T < Tgkr, free vortices at T > TgkT
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Simple model:

Free energy of a vortex in a 2D infinite superfluid:
w2o(T) | (L L2
F=U-Ts=""20Dn (L) — Thgln (L)
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712n0(T)

Vortices appear when £ <0, namely T > Tgkt = —% 1



T <1kt 1" > TBKT
% a 5 ®
e < @ L4
.. o - @ =
oe .
® F 4 s , ® .o

superfluid

normal fluid

Berezinskii-Kosterlitz-Thouless transition — infinite flat case

BKT mechanism:
unbinding of
vortex-antivortex dipoles
at T = TgkT suppresses
the superfluidity
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BKT mechanism:
unbinding of
vortex-antivortex dipoles
at T = TgkT suppresses
the superfluidity

Adimensional parameters

2,
K(e) ="l y(0)

RG scale £ = In(r/¢),

Distance between vortices:
ref¢, o0l

[Nelson, Kosterlitz, PRL 39, 1201 (1977)]

RG equations of a flat superfluid

1
deg(g) — _47T3y2(g)
dy(€) _
—qr = R mK(O]y(0)

— From bare ns(¢ = 0) = n§°)

to renormalized ng = ns(¢ = o)



BKT transition — bubble-trapped BECs

Is the superfluid transition driven by the
vortex-antivortex unbinding also in shell-shaped
condensates?
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BKT transition — bubble-trapped BECs

Is the superfluid transition driven by the vortex-antivortex
unbinding also in shell-shaped condensates?

Let us assume the same mechanism and derive the

consequences
RG equations of a spherical superfluid RG scale?
d,;g—lgg) _ 4y2(0) 0(0) = In[2Rsin(6/2) /€]
d( ()0) Distance between vortices:
)y 2Rsin(0/2) € [€,2R]...
=12 K '
Jio) = 12~ KO y(0)

...but in 3D space!!

[AT, Pelster, Salasnich, arXiv:2104.04585]



BKT transition — bubble-trapped BECs

Finite system size = smooth

kpTin/(Hn/m)

vanishing of ng
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and finite-size BKT scaling:
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[AT, Pelster, Salasnich, arXiv:2104.04585]



Qualitative proof of BKT in shells

In flat superfluids:
vortex proliferation at TgkT
= “wavy" interference pattern
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Optical lattice

High temperatu

[Hadzibabic et al. Nature 441, 1118
(2006)]

In superfluid shells,
free expansion at T =0
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..and a “wavy" pattern at TgkT

[AT, Cinti, Salasnich, PRL 125, 010402
(2020)]



Qualitative proof of BKT in shells

In flat superfluids: In superfluid shells,
vortex proliferation at TBKT free expansion at T =0

= “wavy" interference pattern
2.0
0.0
-100 0 100 -100 O 100

X [um] x [um]

¢ Low temperature

Optical lattice

High temperatu

...and a “wavy" pattern at TgkT

[Hadzibabic et al. Nature 441, 1118 [AT, Cinti, Salasnich, PRL 125, 010402
(2006)] (2020)]

But how can we study quantitatively the BKT transition?



Hydrodynamic modes — infinite flat case

Landau two-fluid model
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[Landau J. Phys. (USSR) 5, 71 (1941)] see also [AT, et al. arXiv:2009.06491
accepted in PRA Letters] , [Furutani, AT, Salasnich, NJP 23, 043043 (2021)]



Hydrodynamic modes — infinite flat case

Landau two-fluid model

Ip o
%ergv-vn:o

Jj

A P —

Sy VP =0
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[Landau J. Phys. (USSR) 5, 71 (1941)]

two fluids = two
coupled sound equations

0?p

_ o2

a2 = VF
0%s o Ns o
Yo @2lsgrr
ot? sn,,v

see also [AT, et al. arXiv:2009.06491

accepted in PRA Letters] , [Furutani, AT, Salasnich, NJP 23, 043043 (2021)]



Hydrodynamic modes — infinite flat case

Landau two-fluid model

Jp ) two fluids = two

ot +V-j=0 coupled sound equations
aps

§V-v, =0 2

ot +p5V - v @ _ wp
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Expanding p ~ pg + p/e™(t=x/¢),
(equilibrium value pg, fluctuation p’)
and similarly for P, §, T...

[Landau J. Phys. (USSR) 5, 71 (1941)] see also [AT, et al. arXiv:2009.06491
accepted in PRA Letters] , [Furutani, AT, Salasnich, NJP 23, 043043 (2021)]



Hydrodynamic modes — infinite flat case
Landau two-fluid model predicts ¢;, ¢, solutions of the biquadratic
equation

oP T§°n nsT§% (OP
“=el(5), el i (3), 0
op): Cyny npéy \0p /)t




Hydrodynamic modes — infinite flat case

Landau two-fluid model predicts ¢;, ¢, solutions of the biquadratic
equation

oP T§°n nsT§% (OP
“=el(5), el i (3), 0
op): Cyny npéy \0p /)t

theory for thermodynamics
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find TS = 42 nK experimentally,
= calculation of ng/n

[Christodoulou, et al. Nature 594, 191 (2021)]



Hydrodynamic modes — bubble-trapped BECs

Opposite path:
derive theoretically the thermodynamics and the superfluid density,

= calculate the sound velocities... Sound??

plane waves is not the correct basis, but spherical harmonics )™

(pr0+pleiwty;77/' )

[AT, Pelster, Salasnich, arXiv:2104.04585]



Hydrodynamic modes — bubble-trapped BECs
Opposite path:
derive theoretically the thermodynamics and the superfluid density,

= calculate the sound velocities... Sound??

plane waves is not the correct basis, but spherical harmonics )™

(pr0+pleiwty;77/' )

the frequencies w1, wy of the
hydrodynamic excitations are the
main quantitative probe of BKT
physics

NW e Ot

wiof/[(12+ 1)Y2wp)

0 20 40 60 80 100
T [nK]
[AT, Pelster, Salasnich, arXiv:2104.04585]



Thermodynamics

[AT, Salasnich, PRL 123, 160403 (2019)]: the grand potential reads

Ie I [e) !
Q:*(47TR2)2L;+%Z Z (EIB*E/ %Z Z In(lfe_ﬁE'B)
=1 m= I=1 m—

with Bogoliubov spectrum EF = \/e/(e/ + 2u1), and ¢ = B2I(1 4 1)/(2mR?).

Scattering theory calculation on the spherical surface gives

27h?

1
B T (kD aer/(2R)]

which balances the logarithmic divergence of zero-point energy



Thermodynamics

2 2
We obtain the € _ _my [In ( 4 ) + 1]
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While the hydrodynamic excitations are non-monotonic around
TgkT, the thermodynamic functions are unaffected by BKT

[AT, Pelster, Salasnich, arXiv:2104.04585]



Experimental relevance of finite-temperature properties

Are finite-temperature predictions experimentally relevant?

harmonic trap

150 I I IN=1(I)><104 -
For the realistic trap parameters g 12 N = 5x10% —%—]
of NASA-JPL CAL experiment: E
K
Tgec drops quickly
with A o shell area 0 1 2A(/)2n ?:HZ] 4050 60

[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

Difficult to reach fully-condensate regime...
= Finite-temperature properties and BKT physics are highly relevant
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Conclusion

We assume the vortex-antivortex unbinding as the mechanism
of the superfluid transition in shell-shaped condensates,

and derive the observable consequences:

— “wavy" imaging pattern

— hydrodynamic modes (vs continuous thermodynamics)

Finite-size BKT < curvature of quantum gases

Shell BECs < platform to study finite-size BKT



Thank you for your attention!
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