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Experimentally realizable

...in microgravity

Bubble-trap...
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[Lundblad et al., npj Microgravity 5, 30 (2019)]

...on Earth

[Colombe et al., EPL 67, 593 (2004)]

⇒ Experiments on NASA-JPL Cold Atom
Lab
[Elliott et al., npj Microgravity 4, 16 (2018)]

[Aveline et al., Nature 582, 193 (2020)]
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Berezinskii-Kosterlitz-Thouless transition – infinite flat case

Vortex-antivortex dipoles at T < TBKT, free vortices at T > TBKT

Simple model:

Free energy of a vortex in a 2D infinite superfluid:

F = U − TS = π~2n(0)s (T )
m ln

(
L
ξ

)
− T kB ln

(
L2

ξ2

)
Vortices appear when F < 0, namely T > TBKT = π~2n(0)s (T )

2mkB



Berezinskii-Kosterlitz-Thouless transition – infinite flat case

superfluid normal fluid

BKT mechanism:
unbinding of

vortex-antivortex dipoles
at T = TBKT suppresses

the superfluidity

Adimensional parameters
K(`) = ~2ns (`)

mkBT
; y(`)

RG scale ` = ln(r/ξ),

Distance between vortices:
r ∈ [ξ,∞]

[Nelson, Kosterlitz, PRL 39, 1201 (1977)]

RG equations of a flat superfluid

dK−1(`)

d`
= −4π3y2(`)

dy(`)

d`
= [2− πK (`)] y(`)

→ From bare ns(` = 0) = n
(0)
s

to renormalized ns = ns(` =∞)
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BKT transition – bubble-trapped BECs

Is the superfluid transition driven by the
vortex-antivortex unbinding also in shell-shaped

condensates?

Is the superfluid transition driven by the vortex-antivortex
unbinding also in shell-shaped condensates?

Let us assume the same mechanism and derive the
consequences

RG equations of a spherical superfluid

dK−1(θ)

d`(θ)
= −4π3y2(θ)

dy(θ)

d`(θ)
= [2− πK (θ)] y(θ)

RG scale?

`(θ) = ln[2R sin(θ/2)/ξ]

Distance between vortices:
2R sin(θ/2) ∈ [ξ, 2R]...

...but in 3D space!!

[AT, Pelster, Salasnich, arXiv:2104.04585]
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BKT transition – bubble-trapped BECs

Finite system size ⇒ smooth
vanishing of ns

and finite-size BKT scaling:

Tin ∼ n ∆T/Tin ∝ ln−2(R/ξ)

[AT, Pelster, Salasnich, arXiv:2104.04585]



Qualitative proof of BKT in shells

In flat superfluids:
vortex proliferation at TBKT

⇒ “wavy” interference pattern

In superfluid shells,
free expansion at T = 0

...and a “wavy” pattern at TBKT

[Hadzibabic et al. Nature 441, 1118

(2006)]

[AT, Cinti, Salasnich, PRL 125, 010402

(2020)]

But how can we study quantitatively the BKT transition?



Qualitative proof of BKT in shells

In flat superfluids:
vortex proliferation at TBKT

⇒ “wavy” interference pattern

In superfluid shells,
free expansion at T = 0

...and a “wavy” pattern at TBKT

[Hadzibabic et al. Nature 441, 1118

(2006)]

[AT, Cinti, Salasnich, PRL 125, 010402

(2020)]

But how can we study quantitatively the BKT transition?



Hydrodynamic modes – infinite flat case

Landau two-fluid model

∂ρ

∂t
+∇ · j = 0

∂ρs̃

∂t
+ ρs̃∇ · vn = 0

∂j

∂t
+∇P = 0

∂vs
∂t

+∇
(
G0

M

)
= 0

two fluids ⇒ two
coupled sound equations

∂2ρ

∂t2
= ∇2P

∂2s̃

∂t2
= s̃2

ns
nn
∇2T

Expanding ρ ∼ ρ0 + ρ′e iω(t−x/c),

(equilibrium value ρ0, fluctuation ρ′)

and similarly for P, s̃, T ...

[Landau J. Phys. (USSR) 5, 71 (1941)] see also [AT, et al. arXiv:2009.06491

accepted in PRA Letters] , [Furutani, AT, Salasnich, NJP 23, 043043 (2021)]
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Hydrodynamic modes – infinite flat case
Landau two-fluid model predicts c1, c2, solutions of the biquadratic
equation

c4 − c2
[(

∂P

∂ρ

)
s̃

+
T s̃2ns
c̃V nn

]
+

nsT s̃2

nnc̃V

(
∂P

∂ρ

)
T

= 0

measure c1, c2,
find T exp

c = 42 nK experimentally,

theory for thermodynamics
(scaled with T th

c = 37 nK)

⇒ calculation of ns/n

[Christodoulou, et al. Nature 594, 191 (2021)]
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Hydrodynamic modes – bubble-trapped BECs

Opposite path:

derive theoretically the thermodynamics and the superfluid density,

⇒ calculate the sound velocities... Sound??

plane waves is not the correct basis, but spherical harmonics Yml
l

(ρ ∼ ρ0 + ρ′e iωtYml
l , ...)

the frequencies ω1, ω2 of the
hydrodynamic excitations are the
main quantitative probe of BKT

physics

[AT, Pelster, Salasnich, arXiv:2104.04585]
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Thermodynamics

[AT, Salasnich, PRL 123, 160403 (2019)]: the grand potential reads

Ω = −(4πR2)
µ2

2g0
+

1

2

lc∑
l=1

l∑
ml=−l

(
EB
l − εl − µ

)
+

1

β

∞∑
l=1

l∑
ml=−l

ln
(

1 − e−βE
B
l

)

with Bogoliubov spectrum EB
l =

√
εl(εl + 2µ), and εl = ~2l(l + 1)/(2mR2).

Scattering theory calculation on the spherical surface gives

g0 = −2π~2

m

1

ln[
√

lc(lc + 1) a eγ/(2R)]
,

which balances the logarithmic divergence of zero-point energy



Thermodynamics

We obtain the
renormalized

grand potential

Ω

4πR2
= − mµ2

8π~2

[
ln

(
4~2

m(EB
1 + ε1 + µ)a2 e2γ+1

)
+

1

2

]
+
mEB

1

8π~2
(EB

1 − ε1 − µ) +
1

4πR2

1

β

∞∑
l=1

l∑
ml=−l

ln
(

1 − e−βE
B
l

)
,

from which we calculate
all the thermodynamic

functions

While the hydrodynamic excitations are non-monotonic around
TBKT, the thermodynamic functions are unaffected by BKT

[AT, Pelster, Salasnich, arXiv:2104.04585]



Experimental relevance of finite-temperature properties

Are finite-temperature predictions experimentally relevant?

For the realistic trap parameters
of NASA-JPL CAL experiment:

TBEC drops quickly
with ∆ ∝ shell area
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[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

Difficult to reach fully-condensate regime...
⇒ Finite-temperature properties and BKT physics are highly relevant



Conclusion

We assume the vortex-antivortex unbinding as the mechanism
of the superfluid transition in shell-shaped condensates,

and derive the observable consequences:

– “wavy” imaging pattern

– hydrodynamic modes (vs continuous thermodynamics)

Finite-size BKT ↔ curvature of quantum gases

Shell BECs ↔ platform to study finite-size BKT
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Thank you for your attention!
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