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Quantum gases and their many-body properties have been studied
consistently only in “flat” low-dimensional configurations

What about curved geometries?



Bubble trap (rf-induced adiabatic potentials)

Theoretical proposal of [Zobay, Garraway, PRL 86, 1195 (2001)]:
confine the atoms with By(r), and B¢ (1, t), yielding

U(F) = MF\/[Zi g wi2x? — hA} 2 + (hQ)?

wj: frequencies of the bare harmonic trap
A: detuning from the resonant frequency

Q: Rabi frequency between coupled levels



Bubble trap (rf-induced adiabatic potentials)

Theoretical proposal of [Zobay, Garraway, PRL 86, 1195 (2001)]:
confine the atoms with By(r), and B¢ (1, t), yielding

U(F) = MF\/[Zi g wi2x? — hA] 2 + (hQ)?

wj: frequencies of the bare harmonic trap
A: detuning from the resonant frequency

Q: Rabi frequency between coupled levels

Minimum of U(r) for

Wi2x? 4+ w 2y + w,? 2:—2%.




Quantum bubbles

On Earth...

e
+

[Colombe et al., EPL 67, 593 (2004)]
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Quantum bubbles, in microgravity
...In microgravity:

On Earth...

[Colombe et al., EPL 67, 593 (2004)]
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Bose-Einstein condensation in ellipsoidal bubbles

Modeling of microgravity experiments in
[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

harmonic trap

For the realistic trap 150 L A S
parameters ([Lundblad et al., npj ’% 120 N= 5x10% —%—]
Microgravity 5, 30 (2019)]): E
&
L
Tgec drops quickly
with A o shell area 0 10 20 30 40 50 60

A2t [kHz]
N ~ 10°, Tgec ~ 30nK

Interplay of T and T{2: [Rhyno, et al. PRA 104, 063310 (2021)]
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Equation of state of a spherical Bose gas

Implementing the Bogoliubov theory, we calculated Tggc, no/n, .
[AT, Salasnich, BEC on the surface of a sphere, PRL 123, 160403 (2019)]

*: [AT, PRA 105, 023324 (2022)],
[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]



Equation of state of a spherical Bose gas

Implementing the Bogoliubov theory, we calculated Tggc, no/n, .
[AT, Salasnich, BEC on the surface of a sphere, PRL 123, 160403 (2019)]

Recently, through the analysis of scattering theory*...

equation of state:
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EP =\/ei(er + 2p),
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Equation of state of a spherical Bose gas

Implementing the Bogoliubov theory, we calculated Tggc, no/n, .
[AT, Salasnich, BEC on the surface of a sphere, PRL 123, 160403 (2019)]

Recently, through the analysis of scattering theory*...

. 104 »
equation of state: o
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*: [AT, PRA 105, 023324 (2022)],
[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]




Equation of state of a spherical Bose gas
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Comments:
» "Less atoms on sphere than on plane”: at fixed u, as:

n — nes when R — oo, but
N < Ny when R — o0,
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P> “the container changes the thermodynamics”

— the geometry influences the thermodynamics by inducing
finite-size geometry-dependent corrections



Equation of state of a spherical Bose gas
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with a(p) =1 — WTEFta 00 02 04 06 08 10

¢/R
Comments:

» "Less atoms on sphere than on plane”: at fixed u, as:
n — nes when R — oo, but
N < Ny when R — o0,

P> “the container changes the thermodynamics”

— the geometry influences the thermodynamics by inducing
finite-size geometry-dependent corrections

» extandable (in principle) to other geometries
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Let us see how the equation of state is derived
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Bogoliubov theory of a spherical gas

Uniform bosons on the surface of the sphere

_ Syl

Z:/D[&,w]e P Q:—;m(Z)

where

B Bh 27 g _
5[¢,¢]:/0 dT/O d(p/o df R?sin 0 L (1, )

is the Euclidean action, and

- [2 80 4
E - 1/}(0, ®, T) <ha‘r + m - M>¢(9a 2 T) + ?W}(a P, T)‘

is the Euclidean Lagrangian.
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Bogoliubov theory of a spherical gas

o

Bogoliubov theory:
(0, 0,7) = o +n(0,¢,7)
(0, ¢,7)

Performing the Gaussian integral on ~ 12 terms, we get

Q= (4R2%+ ZZ B_ e — ),

=1 m,——l

with EB =\/e/(e/ +2p), and ¢ = R2I(I + 1) /(2mR?).

[AT, Salasnich, PRL 123, 160403 (2019)]
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Bogoliubov theory of a spherical gas

00 /

Q=—(4n R2—+;ZZ (EF —e1— 1)

2
&0 I=1 m=—1

Problem: the zero-point energy diverges logarithmically at large /:

1 ("
2/ dl (21 +1) (EP — ) — 1) ~ In(lc)
1

Solution: gy scales with /!

To see this, we need to discuss scattering theory

14



Scattering theory on the sphere
For a particle with reduced mass on the sphere, the interacting
scattering problem reads [Zhang, Ho, J. Phys. B 51, 115301 (2018)]

HoWE(0, ) = E,VH(0,¢),  when 6> rg/R

. 2 72
with Hy = ﬁ.
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Scattering theory on the sphere

For a particle with reduced mass on the sphere, the interacting
scattering problem reads [Zhang, Ho, J. Phys. B 51, 115301 (2018)]

HoWE(0, ) = E,VH(0,¢),  when 6> rg/R
with Hp = L For s-wave scattering, we can write

mR?2

W28, ) o P°(cosh) + fb(f},) [PB(cos 0) + aQE(cos 9)} ,
i T

and imposing W(as/R, ) = 0:

4 2 vag et
fc V) T T e e N v) — — 1
o(&) cotdp(&Ey) — i cotdo(&) . ( 2R )

We identify (it is a shortcut, see [AT, PRA 105, 023324 (2022)] for all steps)
2mh? 1
m In [l ase”/(2R)]

g ~ (&) =

15



Regularized equation of state

2rh? 1

M in |l ase7E /(2R)| into

Putting go = —

1

2 I
— (4m R2) + 2/ d/(2l—|—1)(E,B—e,—u),
280 1

the In(/.) divergence disappears, and we obtain the equation of
state:

L1 o mp In{ 42[1 — a(p)] }

C4nR2 Op  Arh? mpy a2 e2v+1ta(n)
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Application: hydrodynamic modes

Knowing the equation of state and the superfluid density, we
extend the Landau two-fluid model to the spherical case.

[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]
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Application: hydrodynamic modes

Knowing the equation of state and the superfluid density, we
extend the Landau two-fluid model to the spherical case.

Frequencies of the hydrodynamic modes:

I+ D)7 [v2+ v V2 4 v2)\ 2
wi2:[(R2):||:A2Li A2L _Vsz%

w1, wy are the main quantitative
probe of superfluid BKT
transition

wia/ (17 + 1) wp)

00 02 04 06 08 10 12 14
. T/Tin

oP ps T§2 .
V{A T} = (a*p){”}’ =1z  IAT, Pelster, Salasnich, PRR 4, 013122 (2022)]
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Superfluid BKT transition in a spherical superfluid

Finite system size =

smooth vanishing of n AT/ T o In2(R/€)
10 — 0.16} ¥
0.8 -—== 2O/n ) 0.14 \\
= 06 < . =012 N
g So <
04 . 0.10 N -
T N ~
0.2 0.08 Y
0.0 . 10 15 20 2
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R/¢
T nK]

[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]



Superfluid BKT transition in a spherical superfluid

Finite system size =
smooth vanishing of ng

1.0 T

08 - nL‘”/n
= 0.6 <
? \\\ KN
= 04 .

0.2 T

0.0
0 10 20 30 40 50 60 70
T nK]

AT/Tin < In"2(R/€)

0.16 X\
0.14F N\
& Y
< 0.12 S
< -~
0.10 S
AN
0.08 T~
5 10 15 20 25 30 35
R/E

Renormalization group equations

dK=1(0)

Tw) = *47T3y2(9)
dy(9) _
W =[2—7K(9)] y(0)

RG scale: £(0) = In[2Rsin(0/2) /€]

[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]

describe how the superfluid density
(x K) is renormalized by the
thermally excited vortices with
chemical potential ~ —In(y)

E/,(vor) — Zf\il q,2 fhy —
KO M. qigs In [2R sin(v;/2)¢]
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Conclusions

— Curvature in quantum gases (and in cond.
mat.): a new research direction.

The scientific community has just started

exploring shell-shaped BECs, both
experimentally and theoretically
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Conclusions

— Curvature in quantum gases (and in cond.

mat.): @ new research direction. 1

The scientific community has just started °

exploring shell-shaped BECs, both g
experimentally and theoretically

— in spherical condensates: curvature ~ finite-size for BEC,
but consequences on superfluidity

— interesting perspectives with ellipsoidal shells
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Thank you for your attention!
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— AT, PRA 105, 023324 (2022)
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Backup slides



Scattering theory

Noninteracting scattering problem: Ho |¢) = & |¢)

and we suppose that |¢), and & are known

23



Scattering theory

Interacting scattering problem: (Ho + V) |W)

& ))

=& |V)

w))
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Scattering theory on the sphere

For a particle with reduced mass on the sphere, the interacting
scattering problem reads [Zhang, Ho, J. Phys. B 51, 115301 (2018)]

HoWE(0, ) = E,VH(0,¢),  when 6> rg/R
with Ay = %. For s-wave scattering, we can write

W0, ¢) oc PY(cosh) + fo(4<5j,,) |:PB(COS 0) + %Qg(cos 9)} ,

i

and imposing W9 (as/R, ) = 0:

4 2 vag ek
fc v) = T e e N v) — — 1
o(&) cotdo(&y) — i cot do(&y) T < 2R )

One could set fy =~ gp, but how we fix v?

25



Let us reconsider the scattering problem and find a
condition to determine gy(/c, as).

26



Scattering theory
Interacting scattering problem: (Ho + V) |¥) = & |V)

@ ))
w))

whose solution ’lll(+)> is given by the Lippmann-Schwinger

equation
~ ~ 1 ~
T=V+4+V ~
& — Ho +in

where T [¢) = V [Ww(H),

[Lippmann, Schwinger, PR 79, 469 (1950)]

27



Scattering problem on the sphere

We consider the interatomic potential Vo = go d(1 — cos ) 6():

)
80 //

and calculate Ty, = (I, m) = 0| T |lp, m;, = 0) (s-wave
scattering).

We get the Born series

. 21"+ 1)(2lh + 1) V2Ii+1 T
- VOB ST
47 20 +1 5/0—5/+IT]

28



Scattering problem on the sphere

Summing the Born series, we get the renormalized interaction
strength

¢Qﬂ+n@b+1) 1 Ei m+1
47T7-/7/0 (8/0 =+ 177 471' 5/ 5/0

By calculating the sum as integral and setting g.(&),) = fo(&,), we
get

27 h? 1

B T 0 [Vic(le + 1) ase/(2R)]

29



Regularized equation of state

Putting
_2nk? 1
B T I [ Vil + 1) ase7/(2R)]
into

2 1 Ic
QT =0) :—(47rR2)2f‘g0+2/1 a1 (21 +1) (EP — ¢/ — 1)

we get the regularized equation of state

QT=0)  mg? n 4h? +1
4rR2 8mh? m(EB + e + p)a2 e+t 2

mEEB

_l’_

30



Regularized equation of state

Number density n = 1R2 e yields

_omu 4R2[1 — ap)]
1= i o e z N

where we introduce the positive function

I

o =1—-—
('UJ) LL‘l-ElB-i-El
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Regularized equation of state

Number density n = 1R2 e yields

_omu 4R2[1 — ap)]
1= i o e z N

where we introduce the positive function

I

o =1—-—
('UJ) LL‘l-ElB-i-El

Here e; = h2/(mR?), and EE = \/e1(e1 + 2u).

For R — oo: a(p) — 0, reproducing [Mora, Castin, PRA 67, 053615
(2003)]

For finite R: equation of state of a finite-size curved Bose gas.
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Bose-Einstein condensation in ellipsoidal bubbles

In [AT, Cinti, Salasnich, PRL 125, 010402 (2020)], we modeled the
microgravity experiments ([arXiv:2108.05880])

harmonic trap

1t 150 T T T T T
For the realistic trap o N 10610 -]
parameters ([Lundblad et al, npj g N= 5x10% —%—
C
Microgravity 5, 30 (2019)]): T) 90
2 60
'_
Tgec drops quickly 30
with A o shell area 0 10 20 30 40 50 60

A2t [kHz]
N ~ 10°, Tgec ~ 30nK

Difficult to reach fully-condensate regime...
= Finite-temperature properties are highly relevant

32



Density distribution

Condensate vs thermal density
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[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]
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Density distribution and free expansion

Condensate vs thermal density
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[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

Harmonic trap
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Landau two-fluid model
Phenomenological description of a quantum liquid as composed by

» Superfluid: zero viscosity, no entropy

» Normal fluid: viscous, carries all the system entropy

[Landau J. Phys. (USSR) 5, 71 (1941)]
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Landau two-fluid model
Phenomenological description of a quantum liquid as composed by

» Superfluid: zero viscosity, no entropy

» Normal fluid: viscous, carries all the system entropy

Total mass density:
P = Ps+ Pn

Mass current:
j = pPsVs + PnVn

[Landau J. Phys. (USSR) 5, 71 (1941)]
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Landau two-fluid model
Phenomenological description of a quantum liquid as composed by

» Superfluid: zero viscosity, no entropy

» Normal fluid: viscous, carries all the system entropy

Hydrodynamic equations (linearized):

dp

¢ +V-j=0
Total mass density: P
ps
P = Ps+ Pn 8t +pSV vy, =0
j
Mass current: ot +VP=0
J = psVs + ppvp OV
AT
ot Ve

[Landau J. Phys. (USSR) 5, 71 (1941)]
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Hydrodynamic modes (sound waves)

% g
%ergv-vn:o
LI
maavts—l—Vu:O

[Landau J. Phys. (USSR) 5, 71 (1941)]
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Hydrodynamic modes (sound waves)

IR,
%ergv-vn:o
5 op o
maavts—l—Vu:

[Landau J. Phys. (USSR) 5, 71 (1941)]

two coupled sound
equations
(I — O¢l):
0?p

_ 2
gz = VP

(I =1, p,...):

33



Hydrodynamic modes (sound waves)

two coupled sound

equations
dp
9 TVi=0 (11— B,1):
8ps 9?p )
ot +p5V-v, =0 e = VP
9j
ge TVP=0 (1= 1l p,...):
Ovs 2z
m——=+Vu= %8 obs o2
Z 7 a2l T
ot 52 Spnv

Fluctuations around the equilibrium configuration:
p~ po+(58)T 0P(w) e“t=/) + (£2)p 5T (w) e(t=>/9),
5 5+ ()1 6P(w) e (tx/) 4 (92)p 6T (w) ef(t=x/9)

[Landau J. Phys. (USSR) 5, 71 (1941)]
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Hydrodynamic modes (sound waves)

foral =gl T ()]
(5P(w)[—c2(8) | +0T(w)[ - C2(

and setting det = 0 we get the biquadratic equation:

P T§2 T§? (0P
C4_C2[<8) LT3 ps}rps E () o

dp)s  CEvpn pnCv \Op ) 1

...Landau two-fluid model predicts two sound velocities:

2 2 2 21\ 2 1/2

vy + Vv Vi + Vv
C”:{A2L1¢<A2L>@@]

aP P [T

8p o), T\ el

(adiabatic, isothermal, Landau velocities)
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Hydrodynamic modes (sound waves)

(o)
AR
N}
I
| — |
o
N |+
o
H_
VR
)><r\3
N |+
|~<N
N——
N
|
l\<[\)
<
ESIN)
—_
-
~
N

N T N 1 T N PN 2
A = ). T = o). L= ondy

The sound velocities are determined by:

— thermodynamics

— superfluid density

[Landau J. Phys. (USSR) 5, 71 (1941)]
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Hydrodynamic modes and BKT physics

Landau biquadratic equation of sound:

el 2] 2R, o
dp)s  CEvpn pnCv \Op ) 1

The sound velocities are determined by:

— thermodynamics
— superfluid density

[Landau J. Phys. (USSR) 5, 71 (1941)]
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