Scattering theory and equation of state of a spherical 2D Bose gas

Andrea Tononi

Laboratoire Physique Théorique et Modèles Statistiques, CNRS, Université Paris-Saclay

Palaiseau-Florence Workshop on Ultracold Atoms

21/04/2022

based on [A. Tononi, PRA **105**, 023324 (2022)]

Outline

Introduction

- Equation of state of a 2D spherical Bose gas
- Derivation of the equation through scattering theory
- Application: hydrodynamic modes
- Conclusions

Low-dimensional quantum gases

Low-dimensional quantum gases

Quantum gases and their many-body properties have been studied **consistently** only in *"flat"* low-dimensional configurations

What about *curved* geometries?

Bubble trap (rf-induced adiabatic potentials)

Theoretical proposal of [Zobay, Garraway, PRL **86**, 1195 (2001)]: confine the atoms with $B_0(\vec{r})$, and $B_{rf}(\vec{r}, t)$, yielding

$$U(\vec{r}) = M_F \sqrt{\left[\sum_{i} \frac{m}{2} \omega_i^2 x_i^2 - \hbar \Delta\right]^2 + (\hbar \Omega)^2}$$

- ω_i : frequencies of the bare harmonic trap
- $\Delta:$ detuning from the resonant frequency
- Ω : Rabi frequency between coupled levels

Bubble trap (rf-induced adiabatic potentials)

Theoretical proposal of [Zobay, Garraway, PRL **86**, 1195 (2001)]: confine the atoms with $B_0(\vec{r})$, and $B_{rf}(\vec{r}, t)$, yielding

$$U(\vec{r}) = M_F \sqrt{\left[\sum_{i} \frac{m}{2} \omega_i^2 x_i^2 - \hbar \Delta\right]^2 + (\hbar \Omega)^2}$$

 ω_i : frequencies of the bare harmonic trap

- $\Delta:$ detuning from the resonant frequency
- Ω : Rabi frequency between coupled levels

Minimum of $U(\vec{r})$ for $\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2 = \frac{2\hbar\Delta}{m}.$

Quantum bubbles

On Earth...

Quantum bubbles

On Earth...

Quantum bubbles, in microgravity

On Earth...

PHYSICAL REVIEW LETTERS 125, 010402 (2020)

... in microgravity:

[Carollo et al., arXiv:2108.05880]

Bose-Einstein condensation in ellipsoidal bubbles

Modeling of microgravity experiments in [AT, Cinti, Salasnich, PRL **125**, 010402 (2020)]

Interplay of T and $T_{BEC}^{(0)}$: [Rhyno, et al. PRA 104, 063310 (2021)]

Outline

- Introduction
- Equation of state of a 2D spherical Bose gas
- Derivation of the equation through scattering theory
- Application: hydrodynamic modes
- ▷ Conclusions

Implementing the Bogoliubov theory, we calculated T_{BEC} , n_0/n , Ω . [AT, Salasnich, BEC on the surface of a sphere, PRL **123**, 160403 (2019)]

> *: [AT, PRA **105**, 023324 (2022)], [AT, Pelster, Salasnich, PRR **4**, 013122 (2022)]

Implementing the Bogoliubov theory, we calculated T_{BEC} , n_0/n , Ω . [AT, Salasnich, BEC on the surface of a sphere, PRL **123**, 160403 (2019)]

Recently, through the analysis of scattering theory*...

equation of state:

$$n = \frac{m\mu}{4\pi\hbar^2} \ln\left\{\frac{4\hbar^2[1-\alpha(\mu)]}{m\mu \,a_s^2 \,e^{2\gamma+1+\alpha(\mu)}}\right\},\,$$

with
$$\alpha(\mu) = 1 - \frac{\mu}{\mu + E_1^B + \epsilon_1}$$
,
 $E_l^B = \sqrt{\epsilon_l(\epsilon_l + 2\mu)}$,
 $\epsilon_l = \hbar^2 l(l+1)/(2mR^2)$

*: [AT, PRA **105**, 023324 (2022)], [AT, Pelster, Salasnich, PRR **4**, 013122 (2022)]

Implementing the Bogoliubov theory, we calculated T_{BEC} , n_0/n , Ω . [AT, Salasnich, BEC on the surface of a sphere, PRL **123**, 160403 (2019)]

Recently, through the analysis of scattering theory*...

 $(n \equiv n_{\infty} = \frac{m\mu}{4\pi\hbar^2} \ln\left(\frac{4\hbar^2}{m\mu a_s^2 e^{2\gamma+1}}\right)$ at $R = \infty$, $\alpha = 0$) *: [AT, PRA 105, 023324 (2022)], [AT, Pelster, Salasnich, PRR 4, 013122 (2022)]

Comments:

▶ "Less atoms on sphere than on plane": at fixed μ , a_s : $n \rightarrow n_\infty$ when $R \rightarrow \infty$, but $N < N_\infty$ when $R \rightarrow \infty$,

Comments:

- ▶ "Less atoms on sphere than on plane": at fixed μ , a_s : $n \to n_\infty$ when $R \to \infty$, but $N < N_\infty$ when $R \to \infty$,
- "the container changes the thermodynamics"
 - \rightarrow the geometry influences the thermodynamics by inducing finite-size geometry-dependent corrections

Comments:

- ▶ "Less atoms on sphere than on plane": at fixed μ , a_s : $n \to n_\infty$ when $R \to \infty$, but $N < N_\infty$ when $R \to \infty$,
- "the container changes the thermodynamics"
 - $\rightarrow\,$ the geometry influences the thermodynamics by inducing finite-size geometry-dependent corrections
- extandable (in principle) to other geometries

Outline

- Introduction
- Equation of state of a 2D spherical Bose gas
- Derivation of the equation through scattering theory
- Application: hydrodynamic modes
- Conclusions

Let us see how the equation of state is derived

Bogoliubov theory of a spherical gas

Uniform bosons on the surface of the sphere

$$\mathcal{Z} = \int \mathcal{D}[ar{\psi},\psi] \; e^{-rac{S[ar{\psi},\psi]}{\hbar}}, \qquad \Omega = -rac{1}{eta} \ln(\mathcal{Z})$$

where

$$S[ar{\psi},\psi] = \int_0^{eta\hbar} d au \, \int_0^{2\pi} darphi \, \int_0^{\pi} d heta \, R^2 \sin heta \, \mathcal{L}(ar{\psi},\psi)$$

is the Euclidean action, and

$$\mathcal{L} = ar{\psi}(heta,arphi, au) \Big(\hbar \partial_ au + rac{\hat{\mathcal{L}}^2}{2mR^2} - \mu \Big) \psi(heta,arphi, au) + rac{g_0}{2} |\psi(heta,arphi, au)|^4$$

is the Euclidean Lagrangian.

Bogoliubov theory of a spherical gas

Bogoliubov theory: $\psi(\theta, \varphi, \tau) = \psi_0 + \eta(\theta, \varphi, \tau)$

$$\Omega = -(4\pi R^2) \frac{\mu^2}{2g_0} + \frac{1}{2} \sum_{l=1}^{\infty} \sum_{m_l=-l}^{l} (E_l^{\mathsf{B}} - \epsilon_l - \mu),$$

with $E_l^{\mathsf{B}} = \sqrt{\epsilon_l(\epsilon_l + 2\mu)}$, and $\epsilon_l = \hbar^2 l(l+1)/(2mR^2)$.

[AT, Salasnich, PRL 123, 160403 (2019)]

 ψ_0

 $\eta(\theta, \varphi, \tau)$

Bogoliubov theory of a spherical gas

$$\Omega = -(4\pi R^2) \frac{\mu^2}{2g_0} + \frac{1}{2} \sum_{l=1}^{\infty} \sum_{m_l=-l}^{l} (E_l^{\mathsf{B}} - \epsilon_l - \mu)$$

Problem: the zero-point energy diverges logarithmically at large /:

$$\frac{1}{2}\int_{1}^{l_c} \mathrm{d}l \left(2l+1\right) \left(E_l^{\mathrm{B}}-\epsilon_l-\mu\right) \sim \ln(l_c)$$

Solution: g_0 scales with l_c !

To see this, we need to discuss scattering theory

Scattering theory on the sphere

For a particle with reduced mass on the sphere, the interacting scattering problem reads [Zhang, Ho, J. Phys. B **51**, 115301 (2018)]

 $\hat{H}_0 \Psi^{\mu}_{\nu}(\theta, \varphi) = \mathcal{E}_{\nu} \Psi^{\mu}_{\nu}(\theta, \varphi), \quad \text{when} \quad \theta > r_0/R$

with $\hat{H}_0 = \frac{\hat{L}^2}{mR^2}$.

Scattering theory on the sphere

For a particle with reduced mass on the sphere, the interacting scattering problem reads [Zhang, Ho, J. Phys. B **51**, 115301 (2018)]

$$\hat{H}_{0}\Psi^{\mu}_{\nu}(\theta,\varphi) = \mathcal{E}_{\nu}\Psi^{\mu}_{\nu}(\theta,\varphi), \quad \text{when} \quad \theta > r_{0}/R$$

with $\hat{H}_0 = \frac{\hat{L}^2}{mR^2}$. For s-wave scattering, we can write $\Psi^0_{\nu}(\theta,\varphi) \propto P^0_{\nu}(\cos\theta) + \frac{f_0(\mathcal{E}_{\nu})}{4i} \left[P^0_{\nu}(\cos\theta) + \frac{2i}{\pi} Q^0_{\nu}(\cos\theta) \right],$

and imposing $\Psi^0_{\nu}(a_s/R,\varphi) = 0$:

$$f_0(\mathcal{E}_{\nu}) = -\frac{4}{\cot \delta_0(\mathcal{E}_{\nu}) - i}, \qquad \cot \delta_0(\mathcal{E}_{\nu}) = \frac{2}{\pi} \ln \left(\frac{\nu \, a_s \, e^{\gamma_{\mathsf{E}}}}{2R} \right)$$

We identify (it is a shortcut, see [AT, PRA 105, 023324 (2022)] for all steps)

$$g_0 pprox f_0(\mathcal{E}_{l_c}) pprox - rac{2\pi\hbar^2}{m} rac{1}{\ln\left[l_c a_s e^{\gamma_{\rm E}}/(2R)
ight]}$$

Putting
$$g_0 = -\frac{2\pi\hbar^2}{m} \frac{1}{\ln \left[l_c \, a_s e^{\gamma E}/(2R) \right]}$$
 into

$$\Omega = -\left(4\pi R^2\right) \frac{\mu^2}{2g_0} + \frac{1}{2} \int_1^{l_c} dl \left(2l+1\right) \left(E_l^{B} - \epsilon_l - \mu\right),$$

the $ln(l_c)$ divergence disappears, and we obtain the equation of state:

$$n = -\frac{1}{4\pi R^2} \frac{\partial \Omega}{\partial \mu} = \frac{m\mu}{4\pi \hbar^2} \ln \left\{ \frac{4\hbar^2 [1 - \alpha(\mu)]}{m\mu \, a_s^2 \, e^{2\gamma + 1 + \alpha(\mu)}} \right\}$$

Outline

- Introduction
- Equation of state of a 2D spherical Bose gas
- Derivation of the equation through scattering theory
- Application: hydrodynamic modes
- Conclusions

Application: hydrodynamic modes

Knowing the equation of state **and** the superfluid density, we extend the Landau two-fluid model to the spherical case.

Application: hydrodynamic modes

Knowing the equation of state **and** the superfluid density, we extend the Landau two-fluid model to the spherical case.

Frequencies of the hydrodynamic modes:

$$\omega_{1,2}^{2} = \left[\frac{l(l+1)}{R^{2}}\right] \left[\frac{v_{A}^{2} + v_{L}^{2}}{2} \pm \sqrt{\left(\frac{v_{A}^{2} + v_{L}^{2}}{2}\right)^{2} - v_{L}^{2}v_{T}^{2}}\right]$$

 ω_1, ω_2 are the main quantitative probe of superfluid BKT transition

$$\mathbf{v}_{\{A,T\}} = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{\{\tilde{s},T\}}}, \quad \mathbf{v}_L = \sqrt{\frac{\rho_s T \tilde{s}^2}{\rho_n \tilde{c}_V}}$$

Superfluid BKT transition in a spherical superfluid

Superfluid BKT transition in a spherical superfluid

Renormalization group equations

$$egin{aligned} &rac{d \mathcal{K}^{-1}(heta)}{d \ell(heta)} = -4 \pi^3 y^2(heta) \ &rac{d y(heta)}{d \ell(heta)} = \left[2 - \pi \mathcal{K}(heta)
ight] y(heta) \end{aligned}$$

RG scale: $\ell(\theta) = \ln[2R\sin(\theta/2)/\xi]$

describe how the superfluid density $(\propto K)$ is renormalized by the thermally excited vortices with chemical potential $\sim -\ln(y)$

$$E^{(\text{vor})} = \sum_{i=1}^{M} q_i^2 \mu_v - K^{(0)} \sum_{i \neq j=1}^{M} q_i q_j \ln \left[2R \sin(\gamma_{ij}/2)\xi \right]$$

Outline

- Introduction
- Equation of state of a 2D spherical Bose gas
- Derivation of the equation through scattering theory
- Application: hydrodynamic modes
- ▷ Conclusions

Conclusions

 Curvature in quantum gases (and in cond. mat.): a new research direction.
 The scientific community has just started exploring shell-shaped BECs, both experimentally and theoretically

Conclusions

 Curvature in quantum gases (and in cond. mat.): a new research direction.
 The scientific community has just started exploring shell-shaped BECs, both experimentally and theoretically

- in spherical condensates: curvature \approx finite-size for BEC, but consequences on superfluidity
- interesting perspectives with ellipsoidal shells

Thank you for your attention!

References:

- AT, Salasnich, PRL 123, 160403 (2019)
- AT, Cinti, Salasnich, PRL 125, 010402 (2020)
- AT, Pelster, Salasnich, PRR 4, 013122 (2022)
- AT, PRA 105, 023324 (2022)

Backup slides

Scattering theory

Noninteracting scattering problem: $\hat{H}_0 \ket{\phi} = \mathcal{E}_0 \ket{\phi}$

and we suppose that $|\phi\rangle$, and \mathcal{E}_0 are known

Scattering theory

Interacting scattering problem: $(\hat{H}_0 + \hat{V}) \ket{\Psi} = \mathcal{E}_0 \ket{\Psi}$

Scattering theory on the sphere

For a particle with reduced mass on the sphere, the interacting scattering problem reads [Zhang, Ho, J. Phys. B **51**, 115301 (2018)]

$$\hat{H}_{0}\Psi^{\mu}_{\nu}(\theta,\varphi) = \mathcal{E}_{\nu}\Psi^{\mu}_{\nu}(\theta,\varphi), \quad \text{when} \quad \theta > r_{0}/R$$

with $\hat{H}_0 = \frac{\hat{L}^2}{mR^2}$. For *s*-wave scattering, we can write

$$\Psi^{0}_{\nu}(\theta,\varphi) \propto P^{0}_{\nu}(\cos\theta) + \frac{f_{0}(\mathcal{E}_{\nu})}{4i} \bigg[P^{0}_{\nu}(\cos\theta) + \frac{2i}{\pi} Q^{0}_{\nu}(\cos\theta) \bigg],$$

and imposing $\Psi^0_{\nu}(a_s/R,\varphi) = 0$:

$$f_0(\mathcal{E}_{\nu}) = -\frac{4}{\cot \delta_0(\mathcal{E}_{\nu}) - i}, \qquad \cot \delta_0(\mathcal{E}_{\nu}) = \frac{2}{\pi} \ln \left(\frac{\nu \, a_s \, e^{\gamma_{\mathsf{E}}}}{2R} \right)$$

One could set $f_0 \approx g_0$, but how we fix ν ?

Let us reconsider the scattering problem and find a condition to determine $g_0(l_c, a_s)$.

Scattering theory

Interacting scattering problem: $(\hat{H}_0 + \hat{V}) |\Psi\rangle = \mathcal{E} |\Psi\rangle$

whose solution $\left|\Psi^{(+)}\right\rangle$ is given by the Lippmann-Schwinger equation

$$\mathcal{T} = \hat{V} + \hat{V} \frac{1}{\mathcal{E}_0 - \hat{H}_0 + i\eta} \hat{\mathcal{T}},$$

where $\hat{\mathcal{T}} \ket{\phi} = \hat{V} \ket{\Psi^{(+)}}$.

[Lippmann, Schwinger, PR 79, 469 (1950)]

Scattering problem on the sphere

We consider the interatomic potential $\hat{V}_0 = \tilde{g}_0 \,\delta(1 - \cos\theta) \,\delta(\varphi)$:

and calculate $\mathcal{T}_{l',l_0} = \langle l', m'_l = 0 | \hat{\mathcal{T}} | l_0, m_{l_0} = 0 \rangle$ (s-wave scattering).

We get the Born series

$$\mathcal{T}_{l',l_0} = \tilde{g}_0 \, \frac{\sqrt{(2l'+1)(2l_0+1)}}{4\pi} \left[1 + \sum_{l=0}^{\infty} \frac{\sqrt{2l+1}}{\sqrt{2l_0+1}} \frac{\mathcal{T}_{l,l_0}}{\mathcal{E}_{l_0} - \mathcal{E}_l + i\eta} \right]$$

Scattering problem on the sphere

Summing the Born series, we get the renormalized interaction strength

$$rac{\sqrt{(2l'+1)(2l_0+1)}}{4\pi \mathcal{T}_{l',l_0}} = rac{1}{ ilde{g}_e(\mathcal{E}_{l_0}+i\eta)} = rac{1}{ ilde{g}_0} + rac{1}{4\pi}\sum_{l=0}^{l_c}rac{2l+1}{\mathcal{E}_l-\mathcal{E}_{l_0}-i\eta},$$

By calculating the sum as integral and setting $\tilde{g}_e(\mathcal{E}_{l_0}) = f_0(\mathcal{E}_{\nu})$, we get

$$g_0 = -\frac{2\pi\hbar^2}{m} \frac{1}{\ln\left[\sqrt{I_c(I_c+1)} a_s e^{\gamma_{\rm E}}/(2R)\right]}$$

Putting

$$g_0 = -\frac{2\pi\hbar^2}{m} \frac{1}{\ln\left[\sqrt{l_c(l_c+1)} a_s e^{\gamma_{\rm E}}/(2R)\right]}$$

into

$$\Omega(T=0) = -(4\pi R^2) \frac{\mu^2}{2g_0} + \frac{1}{2} \int_1^{l_c} dl (2l+1) (E_l^{\rm B} - \epsilon_l - \mu)$$

we get the regularized equation of state

$$\begin{aligned} \frac{\Omega(T=0)}{4\pi R^2} &= -\frac{m\mu^2}{8\pi\hbar^2} \bigg\{ \ln \bigg[\frac{4\hbar^2}{m(E_1^B + \epsilon_1 + \mu)a_s^2 e^{2\gamma + 1}} \bigg] + \frac{1}{2} \bigg\} \\ &+ \frac{mE_1^B}{8\pi\hbar^2} (E_1^B - \epsilon_1 - \mu), \end{aligned}$$

Number density $n = -\frac{1}{4\pi R^2} \frac{\partial \Omega}{\partial \mu}$, yields

$$n = \frac{m\mu}{4\pi\hbar^2} \ln\left\{\frac{4\hbar^2[1-\alpha(\mu)]}{m\mu \,a_s^2 \,e^{2\gamma+1+\alpha(\mu)}}\right\} + \frac{1}{4\pi R^2} \sum_{l=1}^{\infty} \sum_{m_l=-l}^{l} \frac{\epsilon_l}{E_l^B} \frac{1}{e^{\beta E_l^B} - 1},$$

where we introduce the positive function

$$\alpha(\mu) = 1 - \frac{\mu}{\mu + E_1^B + \epsilon_1}$$

Number density $n = -\frac{1}{4\pi R^2} \frac{\partial \Omega}{\partial \mu}$, yields

$$n = \frac{m\mu}{4\pi\hbar^2} \ln\left\{\frac{4\hbar^2[1-\alpha(\mu)]}{m\mu \,a_s^2 \,e^{2\gamma+1+\alpha(\mu)}}\right\} + \frac{1}{4\pi R^2} \sum_{l=1}^{\infty} \sum_{m_l=-l}^{l} \frac{\epsilon_l}{E_l^B} \frac{1}{e^{\beta E_l^B} - 1},$$

where we introduce the positive function

$$\alpha(\mu) = 1 - \frac{\mu}{\mu + E_1^B + \epsilon_1}$$

Here $\epsilon_1 = \hbar^2/(mR^2)$, and $E_1^B = \sqrt{\epsilon_1(\epsilon_1 + 2\mu)}$.

For $R \to \infty$: $\alpha(\mu) \to 0$, reproducing [Mora, Castin, PRA 67, 053615 (2003)]

For finite R: equation of state of a finite-size curved Bose gas.

Bose-Einstein condensation in ellipsoidal bubbles

In [AT, Cinti, Salasnich, PRL **125**, 010402 (2020)], we modeled the microgravity experiments ([arXiv:2108.05880])

Difficult to reach fully-condensate regime...

 \Rightarrow Finite-temperature properties are highly relevant

Density distribution

Condensate vs thermal density

[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

Density distribution and free expansion

Condensate vs thermal density

[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

Harmonic trap

Bubble trap

Landau two-fluid model

Phenomenological description of a quantum liquid as composed by

- Superfluid: zero viscosity, no entropy
- ▶ Normal fluid: viscous, carries all the system entropy

Landau two-fluid model

Phenomenological description of a quantum liquid as composed by

- Superfluid: zero viscosity, no entropy
- Normal fluid: viscous, carries all the system entropy

Total mass density: $\rho = \rho_s + \rho_n$

Mass current: $\mathbf{j} = \rho_s \mathbf{v}_s + \rho_n \mathbf{v}_n$

Landau two-fluid model

Phenomenological description of a quantum liquid as composed by

- Superfluid: zero viscosity, no entropy
- Normal fluid: viscous, carries all the system entropy

Hydrodynamic equations (linearized):

Total mass density: $\rho = \rho_s + \rho_n$

 $\begin{aligned} \text{Mass current:} \\ \mathbf{j} &= \rho_s \mathbf{v}_s + \rho_n \mathbf{v}_n \end{aligned}$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0$$
$$\frac{\partial \rho \tilde{s}}{\partial t} + \rho \tilde{s} \nabla \cdot \mathbf{v}_n = 0$$
$$\frac{\partial \mathbf{j}}{\partial t} + \nabla P = 0$$
$$m \frac{\partial \mathbf{v}_s}{\partial t} + \nabla \mu = 0$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0$$
$$\frac{\partial \rho \tilde{s}}{\partial t} + \rho \tilde{s} \nabla \cdot \mathbf{v}_n = 0$$
$$\frac{\partial \mathbf{j}}{\partial t} + \nabla P = 0$$
$$m \frac{\partial \mathbf{v}_s}{\partial t} + \nabla \mu = 0$$

 $\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} &= 0\\ \frac{\partial \rho \tilde{s}}{\partial t} + \rho \tilde{s} \nabla \cdot \mathbf{v}_n &= 0\\ \frac{\partial \mathbf{j}}{\partial t} + \nabla P &= 0\\ m \frac{\partial \mathbf{v}_s}{\partial t} + \nabla \mu &= 0 \end{aligned}$

two coupled sound equations

$$(\mathsf{III} \to \partial_t \mathsf{I}):$$
$$\frac{\partial^2 \rho}{\partial t^2} = \nabla^2 P$$

$$(\mathbf{I} \to \mathbf{III}, \rho, \dots):$$
$$\frac{\partial^2 \tilde{s}}{\partial t^2} = \tilde{s}^2 \frac{\rho_s}{\rho_n} \nabla^2 T$$

two coupled sound equations $\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0$ $\frac{\partial \rho \tilde{s}}{\partial t} + \rho \tilde{s} \nabla \cdot \mathbf{v}_n = 0$ $(III \rightarrow \partial_t I)$: $\frac{\partial^2 \rho}{\partial t^2} = \nabla^2 P$ $\frac{\partial \mathbf{j}}{\partial t} + \nabla P = \mathbf{0}$ $(I \rightarrow III, \rho, ...)$: $\frac{\partial^2 \tilde{s}}{\partial t^2} = \tilde{s}^2 \frac{\rho_s}{\rho_n} \nabla^2 T$ $m\frac{\partial \mathbf{v}_s}{\partial t} + \nabla \mu = \mathbf{0}$

Fluctuations around the equilibrium configuration: $\rho \sim \rho_0 + \left(\frac{\partial \rho}{\partial P}\right)_T \delta P(\omega) e^{i\omega(t-x/c)} + \left(\frac{\partial \rho}{\partial T}\right)_P \delta T(\omega) e^{i\omega(t-x/c)},$ $\tilde{s} \sim \tilde{s}_0 + \left(\frac{\partial \tilde{s}}{\partial P}\right)_T \delta P(\omega) e^{i\omega(t-x/c)} + \left(\frac{\partial \tilde{s}}{\partial T}\right)_P \delta T(\omega) e^{i\omega(t-x/c)}$ [Landau J. Phys. (USSR) 5, 71 (1941)]

$$\begin{cases} \delta P(\omega) \left[-c^2 \left(\frac{\partial \rho}{\partial P} \right)_T + 1 \right] + \delta T(\omega) \left[-c^2 \left(\frac{\partial \rho}{\partial T} \right)_P \right] = 0, \\ \delta P(\omega) \left[-c^2 \left(\frac{\partial \tilde{s}}{\partial P} \right)_T \right] + \delta T(\omega) \left[-c^2 \left(\frac{\partial \tilde{s}}{\partial T} \right)_P + \tilde{s}^2 \frac{\rho_s}{\rho_n} \right] = 0, \end{cases}$$

and setting det = 0 we get the biquadratic equation:

$$c^{4} - c^{2} \left[\left(\frac{\partial P}{\partial \rho} \right)_{\tilde{s}} + \frac{T \tilde{s}^{2} \rho_{s}}{\tilde{c}_{V} \rho_{n}} \right] + \frac{\rho_{s} T \tilde{s}^{2}}{\rho_{n} \tilde{c}_{V}} \left(\frac{\partial P}{\partial \rho} \right)_{T} = 0$$

...Landau two-fluid model predicts two sound velocities:

$$c_{1,2} = \left[\frac{v_A^2 + v_L^2}{2} \pm \sqrt{\left(\frac{v_A^2 + v_L^2}{2}\right)^2 - v_L^2 v_T^2}\right]^{1/2}$$
$$v_A = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{\tilde{s}}}, \quad v_T = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_T}, \quad v_L = \sqrt{\frac{\rho_s T \tilde{s}^2}{\rho_n \tilde{c}_V}}$$

(adiabatic, isothermal, Landau velocities)

$$c_{1,2} = \left[\frac{v_A^2 + v_L^2}{2} \pm \sqrt{\left(\frac{v_A^2 + v_L^2}{2}\right)^2 - v_L^2 v_T^2}\right]^{1/2}$$
$$v_A = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{\tilde{s}}}, \quad v_T = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{T}}, \quad v_L = \sqrt{\frac{\rho_s T \tilde{s}^2}{\rho_n \tilde{c}_V}}$$

The sound velocities are determined by:

- thermodynamics
- superfluid density

```
[Landau J. Phys. (USSR) 5, 71 (1941)]
```

Hydrodynamic modes and BKT physics

Landau biquadratic equation of sound:

$$c^{4} - c^{2} \left[\left(\frac{\partial P}{\partial \rho} \right)_{\tilde{s}} + \frac{T \tilde{s}^{2} \rho_{s}}{\tilde{c}_{V} \rho_{n}} \right] + \frac{\rho_{s} T \tilde{s}^{2}}{\rho_{n} \tilde{c}_{V}} \left(\frac{\partial P}{\partial \rho} \right)_{T} = 0$$

$$c_{1,2} = \left[\frac{v_A^2 + v_L^2}{2} \pm \sqrt{\left(\frac{v_A^2 + v_L^2}{2}\right)^2 - v_L^2 v_T^2}\right]^{1/2}$$
$$v_A = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{\tilde{s}}}, \quad v_T = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{\tau}}, \quad v_L = \sqrt{\frac{\rho_s T \tilde{s}^2}{\rho_n \tilde{c}_V}}$$

The sound velocities are determined by:

- thermodynamics
- superfluid density