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Low-dimensional quantum gases

(2D) (1D)

Quantum gases and their many-body properties have been studied
consistently only in “flat” low-dimensional configurations

What about curved geometries?
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Bubble trap (rf-induced adiabatic potentials)

Theoretical proposal of [Zobay, Garraway, PRL 86, 1195 (2001)]:

confine the atoms with B0(~r), and Brf (~r , t), yielding

U(~r) = MF

√[∑
i

m

2
ωi

2x2
i − ~∆

]2

+ (~Ω)2

ωi : frequencies of the bare harmonic trap

∆: detuning from the resonant frequency

Ω: Rabi frequency between coupled levels

Minimum of U(~r) for

ωx
2x2 + ωy

2y2 + ωz
2z2 = 2~∆

m .
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Quantum bubbles

, in microgravity

On Earth...

[Colombe et al., EPL 67, 593 (2004)]

...in microgravity:

[Carollo et al., arXiv:2108.05880]

[Wolf et al., arXiv:2110.15247]
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Bose-Einstein condensation in ellipsoidal bubbles

Modeling of microgravity experiments in
[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

For the realistic trap
parameters ([Lundblad et al., npj

Microgravity 5, 30 (2019)]):

TBEC drops quickly
with ∆ ∝ shell area

30

60

90

120

150

0 10 20 30 40 50 60
T

B
E
C

[n
K

]

Δ/2π [kHz]

N = 10×104

N = 5×104

harmonic trap

shell BEC

N ∼ 105, TBEC ∼ 30 nK

Interplay of T and T
(0)
BEC: [Rhyno, et al. PRA 104, 063310 (2021)]
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Equation of state of a spherical Bose gas

Implementing the Bogoliubov theory, we calculated TBEC, n0/n, Ω.
[AT, Salasnich, BEC on the surface of a sphere, PRL 123, 160403 (2019)]

Recently, through the analysis of scattering theory∗...

equation of state:

n =
mµ

4π~2
ln

{
4~2[1− α(µ)]

mµ a2
s e

2γ+1+α(µ)

}
,

with α(µ) = 1 − µ

µ+EB
1 +ε1

,

EB
l =

√
εl(εl + 2µ),

εl = ~2l(l + 1)/(2mR2)

(n ≡ n∞ = mµ
4π~2 ln

(
4~2

mµ a2
s e

2γ+1

)
at R =∞, α = 0)

∗: [AT, PRA 105, 023324 (2022)],
[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]
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Equation of state of a spherical Bose gas

n =
mµ

4π~2
ln

{
4~2[1− α(µ)]

mµ a2
s e

2γ+1+α(µ)

}
,

with α(µ) = 1− µ
µ+EB

1 +ε1
.

Comments:

I ”Less atoms on sphere than on plane”: at fixed µ, as :
n→ n∞ when R →∞, but
N < N∞ when R →∞,

I “the container changes the thermodynamics”

→ the geometry influences the thermodynamics by inducing
finite-size geometry-dependent corrections

I extandable (in principle) to other geometries

∗: [AT, PRA 105, 023324 (2022)], [AT, Pelster, Salasnich, PRR 4, 013122

(2022)]
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Let us see how the equation of state is derived
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Bogoliubov theory of a spherical gas

Uniform bosons on the surface of the sphere

Z =

∫
D[ψ̄, ψ] e−

S[ψ̄,ψ]
~ , Ω = − 1

β
ln(Z)

where

S [ψ̄, ψ] =

∫ β~

0
dτ

∫ 2π

0
dϕ

∫ π

0
dθ R2 sin θL(ψ̄, ψ)

is the Euclidean action, and

L = ψ̄(θ, ϕ, τ)

(
~∂τ +

L̂2

2mR2
− µ

)
ψ(θ, ϕ, τ) +

g0

2
|ψ(θ, ϕ, τ)|4

is the Euclidean Lagrangian.
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Bogoliubov theory of a spherical gas

Bogoliubov theory:
ψ(θ, ϕ, τ) = ψ0 + η(θ, ϕ, τ)

Performing the Gaussian integral on ∼ η2 terms, we get

Ω =− (4πR2)
µ2

2g0
+

1

2

∞∑
l=1

l∑
ml=−l

(EB
l − εl − µ),

with EB
l =

√
εl(εl + 2µ), and εl = ~2l(l + 1)/(2mR2).

[AT, Salasnich, PRL 123, 160403 (2019)]
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Bogoliubov theory of a spherical gas

Ω =− (4πR2)
µ2

2g0
+

1

2

∞∑
l=1

l∑
ml=−l

(EB
l − εl − µ)

Problem: the zero-point energy diverges logarithmically at large l :

1

2

∫ lc

1
dl (2l + 1) (EB

l − εl − µ) ∼ ln(lc)

Solution: g0 scales with lc !

To see this, we need to discuss scattering theory

14



Scattering theory on the sphere
For a particle with reduced mass on the sphere, the interacting
scattering problem reads [Zhang, Ho, J. Phys. B 51, 115301 (2018)]

Ĥ0Ψµ
ν (θ, ϕ) = EνΨµ

ν (θ, ϕ), when θ > r0/R

with Ĥ0 = L̂2

mR2 .

For s-wave scattering, we can write

Ψ0
ν(θ, ϕ) ∝ P0

ν (cos θ) +
f0(Eν)

4i

[
P0
ν (cos θ) +

2i

π
Q0
ν (cos θ)

]
,

and imposing Ψ0
ν(as/R, ϕ) = 0:

f0(Eν) = − 4

cot δ0(Eν)− i
, cot δ0(Eν) =

2

π
ln

(
ν as e

γE

2R

)
We identify (it is a shortcut, see [AT, PRA 105, 023324 (2022)] for all steps)

g0 ≈ f0(Elc ) ≈ −2π~2

m

1

ln
[
lc aseγE/(2R)

]
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Regularized equation of state

Putting g0 = −2π~2

m
1

ln
[
lc aseγE/(2R)

] into

Ω =− (4πR2)
µ2

2g0
+

1

2

∫ lc

1
dl (2l + 1) (EB

l − εl − µ),

the ln(lc) divergence disappears, and we obtain the equation of
state:

n = − 1

4πR2

∂Ω

∂µ
=

mµ

4π~2
ln

{
4~2[1− α(µ)]

mµ a2
s e

2γ+1+α(µ)

}
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Application: hydrodynamic modes

Knowing the equation of state and the superfluid density, we
extend the Landau two-fluid model to the spherical case.

Frequencies of the hydrodynamic modes:

ω2
1,2 =

[
l(l + 1)

R2

][
v 2
A + v 2

L

2
±

√(
v 2
A + v 2

L

2

)2

− v 2
Lv

2
T

]

ω1, ω2 are the main quantitative
probe of superfluid BKT

transition

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

v{A,T} =

√√√√( ∂P
∂ρ

)
{s̃,T}

, vL =

√
ρsTs̃2

ρn c̃V

[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]
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Superfluid BKT transition in a spherical superfluid

Finite system size ⇒
smooth vanishing of ns
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Renormalization group equations

dK−1(θ)

d`(θ)
= −4π3y2(θ)

dy(θ)

d`(θ)
= [2− πK (θ)] y(θ)

RG scale: `(θ) = ln[2R sin(θ/2)/ξ]

describe how the superfluid density
(∝ K ) is renormalized by the

thermally excited vortices with
chemical potential ∼ − ln(y)

E (vor) =
∑M

i=1 q
2
i µv −

K (0)
∑M

i 6=j=1 qiqj ln
[
2R sin(γij/2)ξ

]

[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]
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Conclusions

– Curvature in quantum gases (and in cond.

mat.): a new research direction.

The scientific community has just started
exploring shell-shaped BECs, both
experimentally and theoretically
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curved quantum gases

– in spherical condensates: curvature ≈ finite-size for BEC,
but consequences on superfluidity

– interesting perspectives with ellipsoidal shells
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Thank you for your attention!
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— AT, PRA 105, 023324 (2022)
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Scattering theory

Noninteracting scattering problem: Ĥ0 |φ〉 = E0 |φ〉

and we suppose that |φ〉, and E0 are known
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Scattering theory

Interacting scattering problem: (Ĥ0 + V̂ ) |Ψ〉 = E0 |Ψ〉
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Scattering theory on the sphere
For a particle with reduced mass on the sphere, the interacting
scattering problem reads [Zhang, Ho, J. Phys. B 51, 115301 (2018)]

Ĥ0Ψµ
ν (θ, ϕ) = EνΨµ

ν (θ, ϕ), when θ > r0/R

with Ĥ0 = L̂2

mR2 . For s-wave scattering, we can write

Ψ0
ν(θ, ϕ) ∝ P0

ν (cos θ) +
f0(Eν)

4i

[
P0
ν (cos θ) +

2i

π
Q0
ν (cos θ)

]
,

and imposing Ψ0
ν(as/R, ϕ) = 0:

f0(Eν) = − 4

cot δ0(Eν)− i
, cot δ0(Eν) =

2

π
ln

(
ν as e

γE

2R

)

One could set f0 ≈ g0, but how we fix ν?
25



Let us reconsider the scattering problem and find a
condition to determine g0(lc , as).
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Scattering theory
Interacting scattering problem: (Ĥ0 + V̂ ) |Ψ〉 = E |Ψ〉

whose solution
∣∣Ψ(+)

〉
is given by the Lippmann-Schwinger

equation

T = V̂ + V̂
1

E0 − Ĥ0 + iη
T̂ ,

where T̂ |φ〉 = V̂
∣∣Ψ(+)

〉
.

[Lippmann, Schwinger, PR 79, 469 (1950)]
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Scattering problem on the sphere

We consider the interatomic potential V̂0 = g̃0 δ(1− cos θ) δ(ϕ):

and calculate Tl ′,l0 = 〈l ′,m′l = 0| T̂ |l0,ml0 = 0〉 (s-wave
scattering).

We get the Born series

Tl ′,l0 = g̃0

√
(2l ′ + 1)(2l0 + 1)

4π

[
1 +

∞∑
l=0

√
2l + 1√
2l0 + 1

Tl ,l0
El0 − El + iη

]
,

28



Scattering problem on the sphere

Summing the Born series, we get the renormalized interaction
strength

√
(2l ′ + 1)(2l0 + 1)

4πTl ′,l0
=

1

g̃e(El0 + iη)
=

1

g̃0
+

1

4π

lc∑
l=0

2l + 1

El − El0 − iη
,

By calculating the sum as integral and setting g̃e(El0) = f0(Eν), we
get

g0 = −2π~2

m

1

ln
[√

lc(lc + 1) aseγE/(2R)
]
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Regularized equation of state
Putting

g0 = −2π~2

m

1

ln
[√

lc(lc + 1) aseγE/(2R)
]

into

Ω(T = 0) =− (4πR2)
µ2

2g0
+

1

2

∫ lc

1
dl (2l + 1) (EB

l − εl − µ)

we get the regularized equation of state

Ω(T = 0)

4πR2
=− mµ2

8π~2

{
ln

[
4~2

m(EB
1 + ε1 + µ)a2

s e
2γ+1

]
+

1

2

}
+

mEB
1

8π~2
(EB

1 − ε1 − µ),

30



Regularized equation of state
Number density n = − 1

4πR2
∂Ω
∂µ , yields

n =
mµ

4π~2
ln

{
4~2[1− α(µ)]

mµ a2
s e

2γ+1+α(µ)

}
+

1

4πR2

∞∑
l=1

l∑
ml=−l

εl

EB
l

1

eβE
B
l − 1

,

where we introduce the positive function

α(µ) = 1− µ

µ+ EB
1 + ε1

Here ε1 = ~2/(mR2), and EB
1 =

√
ε1(ε1 + 2µ).

For R →∞: α(µ)→ 0, reproducing [Mora, Castin, PRA 67, 053615

(2003)]

For finite R: equation of state of a finite-size curved Bose gas.

31



Regularized equation of state
Number density n = − 1

4πR2
∂Ω
∂µ , yields

n =
mµ

4π~2
ln

{
4~2[1− α(µ)]

mµ a2
s e

2γ+1+α(µ)

}
+

1

4πR2

∞∑
l=1

l∑
ml=−l

εl

EB
l

1

eβE
B
l − 1

,

where we introduce the positive function

α(µ) = 1− µ

µ+ EB
1 + ε1

Here ε1 = ~2/(mR2), and EB
1 =

√
ε1(ε1 + 2µ).

For R →∞: α(µ)→ 0, reproducing [Mora, Castin, PRA 67, 053615

(2003)]

For finite R: equation of state of a finite-size curved Bose gas.

31



Bose-Einstein condensation in ellipsoidal bubbles

In [AT, Cinti, Salasnich, PRL 125, 010402 (2020)], we modeled the
microgravity experiments ([arXiv:2108.05880])

For the realistic trap
parameters ([Lundblad et al., npj

Microgravity 5, 30 (2019)]):

TBEC drops quickly
with ∆ ∝ shell area
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]

Δ/2π [kHz]

N = 10×104

N = 5×104

harmonic trap

shell BEC

N ∼ 105, TBEC ∼ 30 nK

Difficult to reach fully-condensate regime...
⇒ Finite-temperature properties are highly relevant

32



Density distribution

and free expansion

Condensate vs thermal density
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Harmonic trap

Bubble trap
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Density distribution and free expansion

Condensate vs thermal density
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Landau two-fluid model

Phenomenological description of a quantum liquid as composed by

I Superfluid: zero viscosity, no entropy

I Normal fluid: viscous, carries all the system entropy

Total mass density:
ρ = ρs + ρn

Mass current:
j = ρsvs + ρnvn

Hydrodynamic equations (linearized):

∂ρ

∂t
+∇ · j = 0

∂ρs̃

∂t
+ ρs̃∇ · vn = 0

∂j

∂t
+∇P = 0

m
∂vs
∂t

+∇µ = 0

[Landau J. Phys. (USSR) 5, 71 (1941)]
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Hydrodynamic modes (sound waves)

∂ρ

∂t
+∇ · j = 0

∂ρs̃

∂t
+ ρs̃∇ · vn = 0

∂j

∂t
+∇P = 0

m
∂vs
∂t

+∇µ = 0

two coupled sound
equations

(III→ ∂t I):

∂2ρ

∂t2
= ∇2P

(I→ III, ρ, ...):

∂2s̃

∂t2
= s̃2 ρs

ρn
∇2T

Fluctuations around the equilibrium configuration:

ρ ∼ ρ0 + ( ∂ρ∂P )T δP(ω) e iω(t−x/c) + ( ∂ρ∂T )P δT (ω) e iω(t−x/c),

s̃ ∼ s̃0 + ( ∂s̃∂P )T δP(ω) e iω(t−x/c) + ( ∂s̃∂T )P δT (ω) e iω(t−x/c)
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Hydrodynamic modes (sound waves)

{
δP(ω)

[
− c2

( ∂ρ
∂P

)
T

+ 1
]

+ δT (ω)
[
− c2

( ∂ρ
∂T

)
P

]
= 0,

δP(ω)
[
− c2

(
∂s̃
∂P

)
T

]
+ δT (ω)

[
− c2

(
∂s̃
∂T

)
P

+ s̃2 ρs
ρn

]
= 0,

and setting det = 0 we get the biquadratic equation:

c4 − c2

[(
∂P

∂ρ

)
s̃

+
T s̃2ρs
c̃V ρn

]
+
ρsT s̃2

ρnc̃V

(
∂P

∂ρ

)
T

= 0

...Landau two-fluid model predicts two sound velocities:

c1,2 =

[
v2
A + v2

L

2
±

√(
v2
A + v2

L

2

)2

− v2
Lv

2
T

]1/2

vA =

√(
∂P

∂ρ

)
s̃

, vT =

√(
∂P

∂ρ

)
T

, vL =

√
ρsTs̃2

ρnc̃V

(adiabatic, isothermal, Landau velocities)
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Hydrodynamic modes (sound waves)
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The sound velocities are determined by:

— thermodynamics

— superfluid density
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Hydrodynamic modes and BKT physics
Landau biquadratic equation of sound:
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