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Introduction and motivation

Experiments∗ with mixtures of
fermionic atoms with large mass

imbalance:

173Yb–6Li, 53Cr–6Li,
40K–6Li, 161Dy–40K

161Dy–40K mixture:

[Ravensbergen et al, PRA 98, 063624 (2018)]

I it is possible to cool and confine the atoms with optical and
magnetic potentials, producing one-dimensional configurations

I It is also possible to tune the interatomic interactions with
magnetic fields

∗: [Green et al, PRX 10, 031037 (2020)] [Neri et al, PRA 101, 063602 (2020)] [Wille et al, PRL 100, 053201

(2008)] [Taglieber et al, PRL. 100, 010401 (2008)] [Voigt et al, PRL 102, 020405 (2009)]

[Green et al, PRX 10, 031037 (2020)] [Ravensbergen et al, PRL 124, 203402 (2020)] 3
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Our system

N heavy fermions of mass M and 1 light atom of mass m.

In this system, there is a competition between:

I Heavy-heavy repulsion due to Pauli exclusion principle

I Heavy-light attraction

4



How many heavy atoms can be bound by a
single light atom in 1D?

Relevant scales of the 1D problem:

I mass ratio M/m,

I number of heavy atoms N ,

I scattering length a (determining the 1+1 binding energy)
5
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Bound states of N + 1 fermions in 1D

Increasing the mass ratio M/m:
the attraction due to the exchange of

the light atom wins over Pauli pressure

⇒ More and more atoms can be bound
into a N + 1 cluster.
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This is indeed shown by
the exact solution of the
quantum mechanical
problem up to N = 5.

(N = 2, 3, 4, 5 here)

[A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018] 7
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Bound states of N + 1 fermions in 1D

What about the large N limit?

We develop:

I a mean-field theory based on
the Thomas-Fermi
approximation for the heavy
fermions

I a Hartree-Fock theory

...Do they work at small N?

The Hartree Fock theory works
also for small N:
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Quantitative agreement with exact energies and correlations.
Let us see more in detail...
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Exact results: the STM equation

Schrödinger equation for a system of N heavy plus 1 light fermions:[
−

N∑
i=1

∂2xi
2M
−
∂2xN+1

2m
+ g

∑
i<N+1

δ(xi − xN+1)− E

]
ψ(x1, ..., xN , xN+1) = 0,

where E < 0, and g < 0.

We consider ψ(x1, ..., xN−1, xN , xN+1 = xN), and its Fourier
transform F (q1, ..., qN−1) satisfies the STM equation

[
a

2
−

1

2κ(q1, ..., qN−1)

]
F (q1, ..., qN−1) = −

∫
dp

2π

∑N−1
j=1 F (q1, ..., qj−1, p, qj+1, ..., qN−1)

κ2(q1, ..., qN−1) + (p + mr
m

∑N−1
i=1 qi )2

,

where κ(q1, ...qN−1) =
√

−2mrE + mr
M+m

(
∑N−1

i=1 qi )2 + mr
M

∑N−1
i=1 q2

i .

Integro-differential equation that can be solved as a matrix one.

[Skorniakov, Ter-Martirosian, JETP 4, 648 (1957)]

[Pricoupenko, Petrov, PRA 100, 042707 (2019)]
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Exact results: obtained through STM equation

The exact solution of the STM equation gives the energies
(continuous lines) of the N + 1 clusters:
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With a detailed analysis, we identify the critical mass ratios:

(M/m)2+1 = 1, (M/m)3+1 = 1.76,
(M/m)4+1 = 4.2, (M/m)5+1 = 12.0
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Two questions

I Large N limit?

I Are there computationally-cheap methods that
work also at small N?
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Thomas-Fermi approach

In the large N limit: mean-field theory based on the Thomas-Fermi
approximation for the heavy fermions

Ω =

∫ [
|φ′(x)|2

2m
+gn(x)|φ(x)|2 +

π2n3(x)

6M
− ε|φ(x)|2−µn(x)

]
dx ,

and φ(x) and n(x) are obtained minimizing Ω.

When µ = 0 (threshold for binding a new heavy atom), we find
analytical solutions:

φ(x) =
−3πε√
−8Mg3

1

cosh2(
√
−mε/2x)

n(x) =
√
−2Mg/π2 |φ(x)|

Threshold:
(
M
m

)
N+1

= π2

36
N3
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Thomas-Fermi approach

We then extend the theory for µ 6= 0, and calculate the energies of
the clusters.

Thomas-Fermi approach (grey curves):
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The Thomas Fermi approach is: analytical, computationally cheap,
good at large N, but it does not match the small-N exact results.
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Hartree-Fock approach

We obtain and solve the following equations:

−∂2xφ1(x)/2m + gn(x)φ1(x) = ε1φ1(x),

−∂2xΨν(x)/2M + g |φ1(x)|2Ψν(x) = EνΨν(x),
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→ no improvement wrt TF energies (dashed lines), but a
second-order correction (dotted lines) gives very good agreement
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N − 1 atoms momentum distribution

All methods give access to the following quantity:

ρN+1(q) =

∫
|F (q, q2, ..., qN−1)|2 dq2...dqN−1,

that can be used to compare their effectiveness at small N.

We find that Hartree-Fock reproduces very well these momentum
correlations:
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Conclusions and perspectives

Binding of N heavy fermions by a light atom:
for larger mass ratio more atoms can be bound.

– Exact results up to N = 5

– TF theory: analytical and works for large N

– HF theory: reproduces well energy and correlations at
small and large N

Possible generalization to other setups:

– higher dimensions

– more particles

– more components

18
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Thank you for your attention!
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