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Introduction and motivation

161 Dy—40K mixture:

Experiments® with mixtures of
fermionic atoms with large mass
imbalance:

173yph-514, >3Cr-51,
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[Ravensbergen et al, PRA 98, 063624 (2018)]

P it is possible to cool and confine the atoms with optical and
magnetic potentials, producing one-dimensional configurations

P |t is also possible to tune the interatomic interactions with
magnetic fields

k.,
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Our system

N heavy fermions of mass M and 1 light atom of mass m.

In this system, there is a competition between:
» Heavy-heavy repulsion due to Pauli exclusion principle
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How many heavy atoms can be bound by a
single light atom in 1D?

? ? 0 ?

—00-00—

Relevant scales of the 1D problem:
» mass ratio M/m,
» number of heavy atoms N,

» scattering length a (determining the 141 binding energy)
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Bound states of N + 1 fermions in 1D

Increasing the mass ratio M/m:
due to the exchange of
the light atom over Pauli pressure

= More and more atoms can be bound
into a N + 1 cluster.

@ OO

[A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018]



Bound states of N + 1 fermions in 1D

Increasing the mass ratio M/m:
due to the exchange of
the light atom over Pauli pressure

= More and more atoms can be bound
into a N + 1 cluster.
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This is indeed shown by
the exact solution of the
quantum mechanical
problem up to N = 5.

(N =2,3,4,5 here)

[A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018]
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Bound states of N + 1 fermions in 1D
The Hartree Fock theory works
also for small N:
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Quantitative agreement with exact energies and correlations.
Let us see more in detail...
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Exact results: the STM equation

Schrodinger equation for a system of N heavy plus 1 light fermions:

02 02
: 2;\;, - 2I:;1 + Z 5 — XN+1 1/1(X1, '-~7XN7XN+1) = 0,
i=1 i<N+1

where £ <0, and g < 0.
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Exact results: the STM equation

Schrodinger equation for a system of N heavy plus 1 light fermions:

02 0?
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where £ <0, and g < 0.
We consider ¥(xq, ...
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Exact results: the STM equation
Schrodinger equation for a system of N heavy plus 1 light fermions:
N
0 O
[ 2M - 2':; +g Z O(xi — Xn+1) E] P(x1, s X, Xng1) = 0,
i=1 i<N+1

where £ <0, and g < 0.

We consider ¥(x, ..., Xny—1, XN, XN+1 = Xn), and its Fourier
transform F(qi, ..., gn_1) satisfies the STM equation

a 1

:| dp ZJN:II F(qlv"'vqulypz qj+17"'7qN71)
2 2x(q1,-qN-1)

27 52(qu, . qu-1) + (p+ 2 SN gi)?

F(a1,...,qn-1) = */

where w(qr, ..qu-1) = \/~2m/ E + g (S0 42 + % SN g,
Integro-differential equation that can be solved as a matrix one.

[Skorniakov, Ter-Martirosian, JETP 4, 648 (1957)]
[Pricoupenko, Petrov, PRA 100, 042707 (2019)]
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Exact results: obtained through STM equation

The exact solution of the STM equation gives the energies
(continuous lines) of the N + 1 clusters:
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With a detailed analysis, we identify the critical mass ratios:

(I\/I/m)2+1 = ]., (M/m)3+1 = 1.76,
(M/m)as1 = 4.2, (M/m)s1 = 12.0
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Two questions

» Large N limit?

» Are there computationally-cheap methods that
work also at small N7
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Thomas-Fermi approach

In the large N limit: mean-field theory based on the Thomas-Fermi
approximation for the heavy fermions

Q- /{W( +gn(100) P+ ) (02 — un()| i,

and ¢(x) and n(x) are obtained minimizing Q.
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Thomas-Fermi approach

In the large N limit: mean-field theory based on the Thomas-Fermi
approximation for the heavy fermions

Q- /V( +gn(100) P+ ) (02 — un()| i,

and ¢(x) and n(x) are obtained minimizing Q.

When 1 = 0 (threshold for binding a new heavy atom), we find
analytical solutions:

—3me 1
P = /—8Mg3 cosh?(\/—me/2x)
=V —2Mg/m?[$(x)

2

Threshold: () = IV

o(z)/do, n(x)a
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Thomas-Fermi approach

We then extend the theory for i # 0, and calculate the energies of
the clusters.
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Thomas-Fermi approach

We then extend the theory for i # 0, and calculate the energies of
the clusters.

Thomas-Fermi approach (grey curves):
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The Thomas Fermi approach is: analytical, computationally cheap,

good at large N, but it does not match the small-N exact results.
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Hartree-Fock approach

We obtain and solve the following equations:

—8)2(¢1(x)/2m + gn(x)p1(x) = e161(x),

—03V,(x)/2M + glo1(x) PV (x) = BV, (x),
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Hartree-Fock approach

We obtain and solve the following equations:

— %1 (x)/2m + gn(x)¢1(x) = e1¢1(x),
— OV, (x)/2M + g|¢1(x)[P W, (x) = E W, (x),
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— no improvement wrt TF energies (dashed lines), but a

second-order correction (dotted lines) gives very good agreement
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N — 1 atoms momentum distribution

All methods give access to the following quantity:

PN+1(q) :/F(q7q2a"'7qN—1)|2 dQ2---dCIN—1>

that can be used to compare their effectiveness at small N.
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N — 1 atoms momentum distribution

All methods give access to the following quantity:

PN+1(q) :/F(q7q27"'7qN—1)|2 dQ2---dCIN—1>

that can be used to compare their effectiveness at small N.

We find that Hartree-Fock reproduces very well these momentum
correlations:
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Conclusions and perspectives

Binding of N heavy fermions by a light atom:
for larger mass ratio more atoms can be bound.
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Conclusions and perspectives

Binding of N heavy fermions by a light atom:
for larger mass ratio more atoms can be bound.

Exact results up to N =5

TF theory: analytical and works for large N

HF theory: reproduces well energy and correlations at
small and large N

Possible generalization to other setups:

higher dimensions

more particles

more components
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Thank you for your attention!

References:

— A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018
— A. Pricoupenko, and D. S. Petrov, PRA 100, 042707 (2019)

19



