Binding of heavy fermions by a single light atom in 1D

Andrea Tononi

Laboratoire Physique Théorique et Modèles Statistiques, CNRS, Université Paris-Saclay

ECT* NPES Workshop,

Trento

04-08/07/2022

based on [A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018, accepted in PRA as a Letter]

The system

 $\hat{H} = \int \left(-\frac{\hat{\Psi}_x^{\dagger} \partial_x^2 \hat{\Psi}_x}{2M} \right)$ $\frac{\partial_x^2 \hat{\Psi}_x}{\partial M} - \frac{\hat{\phi}_x^{\dagger} \partial_x^2 \hat{\phi}_x}{2m}$ $\frac{\partial^2 V_{\mathsf{x}} \varphi_{\mathsf{x}}}{\partial \mathsf{m}} + g \hat{\Psi}_{\mathsf{x}}^\dagger \hat{\phi}_{\mathsf{x}}^\dagger \hat{\Psi}_{\mathsf{x}} \hat{\phi}_{\mathsf{x}}$ \setminus dx, $g < 0$

N heavy fermions of mass M 1 light atom of mass m

Noninteracting heavy

heavy-light attraction

How many heavy fermions can be bound by a single light atom in 1D?

How many heavy fermions can be bound by a single light atom in 1D?

Competition between:

- ► Kinetic energy of heavy atoms $\sim 1/M$
- \blacktriangleright (Effective) attractive heavy-heavy potential, mediated by the exchange of the light atom $\sim 1/m$

The $(N+1)$ -body problem

A well posed problem (clear question), with few simple parameters

- \triangleright spatial dimension $D = 1$,
- \triangleright scattering length a
- \blacktriangleright mass ratio M/m ,
- \blacktriangleright number of heavy atoms N

The $(N+1)$ -body problem

A well posed problem (clear question), with few simple parameters

- \triangleright spatial dimension $D = 1$,
- \triangleright scattering length a

relevant for experiments with mass and density-imbalanced fermionic mixtures $173\text{Yb-}6\text{Li}$, $53\text{Cr-}6\text{Li}$, ⁴⁰K– ⁶Li, ¹⁶¹Dy–

- \blacktriangleright mass ratio M/m ,
- \blacktriangleright number of heavy atoms N

Outline

- \triangleright Introduction and motivation
- \triangleright Born-Oppenheimer theory of the 3D trimer
- \triangleright Bound states of $N + 1$ fermions in 1D
- \triangleright Derivation of the results
	- \triangleright Exact results for $N < 5$
	- \triangleright Mean field: Thomas-Fermi approximation
	- . Mean field: Hartree-Fock
- \triangleright Conclusions and perspectives

$$
-\frac{\hbar^2\nabla^2_{\vec{r}}}{2m}\phi_R(\vec{r})=\epsilon(R)\,\phi_R(\vec{r}),\qquad\phi_R(\vec{r}\to\bar{R})
$$

Light atom in the field of fixed heavy fermions (distance $R=|\vec{R_2}-\vec{R_1}|)$

$$
\phi_R(\vec{r}\rightarrow\vec{R_i}/2)\propto\frac{1}{|\vec{r}-\vec{R_i}/2|}-\frac{1}{a}
$$

$$
-\frac{\hbar^2\nabla^2_{\vec{r}}}{2m}\phi_R(\vec{r})=\epsilon(R)\,\phi_R(\vec{r}),\qquad\phi_R(\vec{r}\to\bar{R})
$$

Light atom in the field of fixed heavy fermions (distance $R=|\vec{R_2}-\vec{R_1}|)$

$$
\phi_R(\vec{r}\rightarrow\vec{R_i}/2)\propto\frac{1}{|\vec{r}-\vec{R_i}/2|}-\frac{1}{a}
$$

Small R: $\epsilon_{+,m}(R) \sim -\frac{\hbar^2}{mR}$ $mR²$

Large R: $\epsilon_{+,m}(R) \sim \epsilon_0$, dimer energy

Schrödinger equation for heavy atom with reduced mass $M/2$ in the effective potential:

$$
\left[-\frac{\hbar^2}{M}\frac{\partial^2}{\partial R^2}+U_{\text{eff}}(R)-E\right]\chi(R)=0,\quad U_{\text{eff}}(R)=\frac{\hbar^2I(I+1)}{MR^2}+\epsilon_{+,m}(R)+|\epsilon_0|
$$

Schrödinger equation for heavy atom with reduced mass $M/2$ in the effective potential:

$$
\left[-\frac{\hbar^2}{M}\frac{\partial^2}{\partial R^2}+U_{\text{eff}}(R)-E\right]\chi(R)=0,\quad U_{\text{eff}}(R)=\frac{\hbar^2I(I+1)}{MR^2}+\epsilon_{+,m}(R)+|\epsilon_0|
$$

The light-mediated effective heavy-heavy potential is "tuned" by M/m :

Outline

- \triangleright Introduction and motivation
- \triangleright Born-Oppenheimer theory of the 3D trimer
- \triangleright Bound states of $N + 1$ fermions in 1D
- \triangleright Derivation of the results
	- \triangleright Exact results for $N < 5$
	- \triangleright Mean field: Thomas-Fermi approximation
	- . Mean field: Hartree-Fock
- \triangleright Conclusions and perspectives

Binding in 1D

As in 3D, there is a competition between heavy-heavy kinetic energy and light-mediated heavy-heavy attraction.

Binding in 1D

As in 3D, there is a **competition** between heavy-heavy kinetic energy and light-mediated heavy-heavy attraction.

State of the art in 1D:

▶ Trimer (2+1 atoms) at $M/m > 1$ (red dashed curve) [Kartavtsev, et al. JETP 108, 365 (2009)]

 \blacktriangleright Tetramer (3+1 atoms) through Born-Oppenheimer treatment (lowest black curve)

[Mehta, PRA 89, 052706 (2014)]

Our results

We provide the **exact** solution of the quantum mechanical problem up to $N = 5$. $(N = 2, 3, 4, 5 \text{ here})$

[A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018]

Our results

We provide the **exact** solution of the quantum mechanical problem up to $N = 5$. $(N = 2, 3, 4, 5 \text{ here})$

We identify the critical mass ratios:

$$
(M/m)_{2+1} = 1,
$$

\n
$$
(M/m)_{3+1} = 1.76,
$$

\n
$$
(M/m)_{4+1} = 4.2,
$$

\n
$$
(M/m)_{5+1} = 12.0 \pm 0.5
$$

[A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018]

Outline

- \triangleright Introduction and motivation
- \triangleright Born-Oppenheimer theory of the 3D trimer
- \triangleright Bound states of $N + 1$ fermions in 1D
- \triangleright Derivation of the results
	- \triangleright Exact results for $N < 5$
	- \triangleright Mean field: Thomas-Fermi approximation
	- . Mean field: Hartree-Fock
- \triangleright Conclusions and perspectives

Schrödinger equation for a system of N heavy plus 1 light fermions:

$$
\[-\sum_{i=1}^N \frac{\partial_{x_i}^2}{2M} - \frac{\partial_{x_{N+1}}^2}{2m} + g \sum_{i < N+1} \delta(x_i - x_{N+1}) - E\] \psi(x_1, \ldots, x_N, x_{N+1}) = 0,
$$

where $E < 0$, and $g = -1/(m_r a) < 0$, $m_r = mM/(m + M)$.

Schrödinger equation for a system of *heavy plus 1 light fermions:*

$$
\[-\sum_{i=1}^N \frac{\partial_{x_i}^2}{2M} - \frac{\partial_{x_{N+1}}^2}{2m} + g \sum_{i < N+1} \delta(x_i - x_{N+1}) - E\] \psi(x_1, \ldots, x_N, x_{N+1}) = 0,
$$

where $E < 0$, and $g = -1/(m_r a) < 0$, $m_r = mM/(m + M)$.

Wave function of $(N - 1)$ fermions plus a dimer: $\psi(x_1, ..., x_{N-1}, x_N, x_{N+1} = x_N)$

Schrödinger equation for a system of *heavy plus 1 light fermions:*

$$
\[-\sum_{i=1}^N \frac{\partial_{x_i}^2}{2M} - \frac{\partial_{x_{N+1}}^2}{2m} + g \sum_{i < N+1} \delta(x_i - x_{N+1}) - E\] \psi(x_1, \ldots, x_N, x_{N+1}) = 0,
$$

where $E < 0$, and $g = -1/(m_ra) < 0$, $m_r = mM/(m + M)$.

Wave function of $(N-1)$ fermions plus a dimer: $\psi(x_1, ..., x_{N-1}, x_N, x_{N+1} = x_N)$ Fourier transform: $F(q_1, ..., q_{N-1}, q_N)$

Schrödinger equation for a system of *heavy plus 1 light fermions:*

$$
\left[-\sum_{i=1}^N \frac{\partial_{x_i}^2}{2M} - \frac{\partial_{x_{N+1}}^2}{2m} + g \sum_{i < N+1} \delta(x_i - x_{N+1}) - E\right] \psi(x_1, \ldots, x_N, x_{N+1}) = 0,
$$

where $E < 0$, and $g = -1/(m_r a) < 0$, $m_r = mM/(m + M)$.

Wave function of $(N-1)$ fermions plus a dimer: $\psi(x_1, ..., x_{N-1}, x_N, x_{N+1} = x_N)$ Fourier transform: $F(q_1, ..., q_{N-1}, q_N)$ In center of mass coordinates $q_N = -\sum_{i=1}^N q_i$ we have: $F(q_1, ..., q_{N-1})$

 $F(q_1, ..., q_{N-1})$ satisfies the STM equation

$$
\left[\frac{a}{2}-\frac{1}{2\kappa(q_1,...,q_{N-1})}\right]F(q_1,...,q_{N-1})=-\int\frac{dp}{2\pi}\frac{\sum_{j=1}^{N-1}F(q_1,...,q_{j-1},p,q_{j+1},...,q_{N-1})}{\kappa^2(q_1,...,q_{N-1})+(\rho+\frac{m_r}{m}\sum_{j=1}^{N-1}q_j)^2},
$$

where
$$
\kappa(q_1, ... q_{N-1}) = \sqrt{-2m_r E + \frac{m_r}{M+m} (\sum_{i=1}^{N-1} q_i)^2 + \frac{m_r}{M} \sum_{i=1}^{N-1} q_i^2}
$$
.

[Skorniakov, Ter-Martirosian, JETP 4, 648 (1957)] [Pricoupenko, Petrov, PRA 100, 042707 (2019)]

Integro-differential equation that includes naturally zero-range interactions, and removes the dimer coordinates.

The exact solution of the STM equation gives the energies (continuous lines) of the $N + 1$ clusters:

We also find that the trimer and tetramer have $P = -1$, while pentamer and hexamer have $P = +1$

\blacktriangleright Large N limit?

 \triangleright Are there computationally-cheap methods that work also at small N?

Outline

- \triangleright Introduction and motivation
- \triangleright Born-Oppenheimer theory of the 3D trimer
- \triangleright Bound states of $N + 1$ fermions in 1D
- \triangleright Derivation of the results
	- \triangleright Exact results for $N < 5$
	- \triangleright Mean field: Thomas-Fermi approximation
	- . Mean field: Hartree-Fock
- \triangleright Conclusions and perspectives

Large N limit: mean-field theory based on the Thomas-Fermi approximation for the heavy fermions

$$
\Omega = \int \left[\frac{|\phi'(x)|^2}{2m} + gn(x)|\phi(x)|^2 + \frac{\pi^2 n^3(x)}{6M} - \epsilon |\phi(x)|^2 - \mu n(x) \right] dx,
$$

Large N limit: mean-field theory based on the Thomas-Fermi approximation for the heavy fermions

$$
\Omega = \int \left[\frac{|\phi'(x)|^2}{2m} + gn(x)|\phi(x)|^2 + \frac{\pi^2 n^3(x)}{6M} - \epsilon |\phi(x)|^2 - \mu n(x) \right] dx,
$$

minimizing Ω wrt ϕ and $n: -\phi''_1$ $J_1''(x) - 2mgn(x)\phi_1(x) = 2m\epsilon\phi_1(x),$

$$
n(x) = \sqrt{-2Mg(|\phi(x)|^2 - \mu/g)/\pi^2}, \text{ when } |\phi(x)|^2 > \mu/g.
$$

Large N limit: mean-field theory based on the Thomas-Fermi approximation for the heavy fermions

$$
\Omega = \int \left[\frac{|\phi'(x)|^2}{2m} + gn(x)|\phi(x)|^2 + \frac{\pi^2 n^3(x)}{6M} - \epsilon |\phi(x)|^2 - \mu n(x) \right] dx,
$$

minimizing Ω wrt ϕ and $n: -\phi''_1$ $J_1''(x) - 2mgn(x)\phi_1(x) = 2m\epsilon\phi_1(x),$ $n(x)=\sqrt{-2Mg(|\phi(x)|^2-\mu/g)/\pi^2}$, when $|\phi(x)|^2>\mu/g$. When $\mu = 0$ (threshold for binding a new heavy atom), analytical: Threshold: $\left(\frac{M}{m}\right)_{N+1} = \frac{\pi^2}{36} N^3$ $\phi(x) = \frac{-3\pi\epsilon}{\sqrt{-8Mg^3}}$ 1 $\cosh^2(\sqrt{-m\epsilon/2}x)$ $n(x) = \sqrt{-2Mg/\pi^2} |\phi(x)|$ $0.0 - 0.0 - 10$ 0.2 0.4 0.6 0.8 1.0

 -10 -5 0 5 10

We extend the theory for $\mu \neq 0$, and calculate cluster energies.

We extend the theory for $\mu \neq 0$, and calculate cluster energies.

Thomas-Fermi approach (grey curves), analytical, computationally cheap, works at large N:

We extend the theory for $\mu \neq 0$, and calculate cluster energies.

Thomas-Fermi approach (grey curves), analytical, computationally cheap, works at large N:

What is the main source of discrepancy with the small-N exact results? TF, mean field?

$$
\hat{H} = \int \left(-\frac{\hat{\Psi}_{x}^{\dagger} \partial_{x}^{2} \hat{\Psi}_{x}}{2M} - \frac{\hat{\partial}_{x}^{\dagger} \partial_{x}^{2} \hat{\phi}_{x}}{2m} + g \hat{\Psi}_{x}^{\dagger} \hat{\phi}_{x}^{\dagger} \hat{\Psi}_{x} \hat{\phi}_{x} \right) dx
$$

Energy $E_{N+1} = \langle v | \hat{H} | v \rangle$, with the variational ansatz: $|v\rangle = \int dx \phi_1(x) \hat{\phi}_x^{\dagger} \int dx_1...dx_N \frac{\det[\Psi_\nu(x_n)]}{\sqrt{N!}} \prod_{\eta=1}^N \hat{\Psi}_{x_\eta}^{\dagger} |0\rangle$

$$
\hat{H} = \int \left(-\frac{\hat{\Psi}_{x}^{\dagger} \partial_{x}^{2} \hat{\Psi}_{x}}{2M} - \frac{\hat{\phi}_{x}^{\dagger} \partial_{x}^{2} \hat{\phi}_{x}}{2m} + g \hat{\Psi}_{x}^{\dagger} \hat{\phi}_{x}^{\dagger} \hat{\Psi}_{x} \hat{\phi}_{x} \right) dx
$$

Energy $E_{N+1} = \langle v | \hat{H} | v \rangle$, with the variational ansatz: $|v\rangle = \int dx \phi_1(x) \hat{\phi}_x^{\dagger} \int dx_1...dx_N \frac{\det[\Psi_\nu(x_n)]}{\sqrt{N!}} \prod_{\eta=1}^N \hat{\Psi}_{x_\eta}^{\dagger} |0\rangle$

Minimizing $E_{N+1} - \epsilon_1 - \mu N$ with respect to the orbitals yields:

$$
-\frac{\partial_x^2 \phi_1}{2m} + gn \phi_1 = \epsilon_1 \phi_1,
$$

$$
-\frac{\partial_x^2 \Psi_\nu}{2M} + g |\phi_1|^2 \Psi_\nu = E_\nu \Psi_\nu,
$$

$$
n = \sum_{\nu=1}^N |\Psi_\nu|^2
$$

 \rightarrow No improvement wrt TF energies (dashed lines)

 \rightarrow No improvement wrt TF energies (dashed lines)

$N-1$ atoms momentum distribution

All methods give access to the following quantity:

$$
\rho_{N+1}(q) = \int |F(q, q_2, ..., q_{N-1})|^2 \, dq_2...dq_{N-1},
$$

that can be used to compare their effectiveness at small N.

$N-1$ atoms momentum distribution

All methods give access to the following quantity:

$$
\rho_{N+1}(q) = \int |F(q, q_2, ..., q_{N-1})|^2 \, dq_2...dq_{N-1},
$$

that can be used to compare their effectiveness at small N.

We find that Hartree-Fock reproduces very well these momentum correlations:

Outline

- \triangleright Introduction and motivation
- \triangleright Born-Oppenheimer theory of the 3D trimer
- \triangleright Bound states of $N + 1$ fermions in 1D
- \triangleright Derivation of the results
	- \triangleright Exact results for $N < 5$
	- \triangleright Mean field: Thomas-Fermi approximation
	- . Mean field: Hartree-Fock
- \triangleright Conclusions and perspectives

Conclusions and perspectives

Binding of N heavy fermions by a light atom: for larger mass ratio more atoms can be bound.

(very different from 3D, where there are no bound states for $M/m > 13.6$, meaning no 6+1 clusters!)

Conclusions and perspectives

Binding of N heavy fermions by a light atom: for larger mass ratio more atoms can be bound.

(very different from 3D, where there are no bound states for $M/m > 13.6$, meaning no 6+1 clusters!)

- Exact results up to $N = 5$
- $-$ TF theory: analytical and works for large N
- HF theory: reproduces well energy and correlations at small and large N

Conclusions and perspectives

Binding of N heavy fermions by a light atom: for larger mass ratio more atoms can be bound.

(very different from 3D, where there are no bound states for $M/m > 13.6$, meaning no 6+1 clusters!)

- Exact results up to $N = 5$
- $-$ TF theory: analytical and works for large N
- HF theory: reproduces well energy and correlations at small and large N

Possible generalization to other setups:

– higher dimensions – more particles

Thank you for your attention!

References:

- A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018, accepted in PRA as a Letter
- A. Pricoupenko, and D. S. Petrov, PRA 100, 042707 (2019)