Quantum statistical properties of shell-shaped Bose-Einstein condensates

Andrea Tononi

Dipartimento di Fisica e Astronomia "Galileo Galilei", Università di Padova

In collaboration with F. Cinti, L. Salasnich.

This presentation on www.andreatononi.com

Shell-shaped Bose-Einstein condensate

for strong radial confinement: BEC on the <u>surface</u> of an ellipsoid

Why should we care?

- BEC in 2D (finite size)
- curved quantum system

- BKT, topology, vortices
- experimentally realizable

The experiments with "bubble" traps

technically difficult on Earth...

[Colombe et al., EPL 67, 593 (2004)]

NASA-JPL Cold Atom Laboratory

[Lundblad *et al.*, npj Microgravity **5**, 30 (2019)]

Outline

- Introduction on bubble traps
- Bose-Einstein condensation on the surface of a sphere
- Properties and challenges of shell-shaped condensates
- Summary and outlook

Introduction on bubble traps

Alkali-metal atoms (here: total angular momentum F = 2)

+ Magnetic field $\mathbf{B}(\vec{r})$ \implies space-dependent Zeeman splitting with $m_F = \{\pm 2, \pm 1, 0\} \implies$ space-dependent bare potentials $u(\vec{r})$

+ Radiofrequency field $\mathbf{B}_{rf}(\vec{r}, t) \implies$ bubble trap in the dressed picture (old m_F bad quantum number)

[Lundblad et al., npj Microgravity 5, 30 (2019)]

Bubble trap

$$U(\vec{r}) = M_F \sqrt{\left[\sum_{i} m \omega_i^2 x_i^2 / 2 - \hbar \Delta\right]^2 + (\hbar \Omega)^2}$$

- ω_i : frequencies of the bare harmonic trap
- Δ : detuning from the resonant frequency
- Ω : Rabi frequency between coupled levels

Minimum for
$$\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2 = 2\hbar\Delta/m$$
.

[Zobay, Garraway, Phys. Rev. Lett. 86, 1195 (2001)]

$$U(\vec{r}) = M_F \sqrt{\left[\sum_{i} m \omega_i^2 x_i^2 / 2 - \hbar \Delta\right]^2 + (\hbar \Omega)^2} + \frac{mgz}{2}$$

- If gravity is included the atoms will fall to the bottom of the trap!
 - ⇒ Experiments on NASA-JPL Cold Atom Lab, see [Elliott *et al.*, npj Microgravity 4, 16 (2018)] (PI: N. Lundblad)

Cold Atom Lab (CAL)

This one \downarrow

2019 upgrade:

Routine production of microgravity BECs:

[Aveline *et al.*, Nature **582**, 193 (2020)] ...towards BECCAL: [Frye *et al.*, arXiv:1912.04849]

Outline

- Introduction on bubble traps
- ▷ Bose-Einstein condensation on the surface of a sphere
- Properties and challenges of shell-shaped condensates
- Summary and outlook

Bose-Einstein condensation on the surface of a sphere

Noninteracting case, single particle on a sphere of radius R:

 $\frac{\hat{L}^2}{2mR^2}\psi_{I,m_I}(\theta,\varphi)=\epsilon_I\psi_{I,m_I}(\theta,\varphi),$

with
$$\epsilon_l = \frac{\hbar^2}{2mR^2} l(l+1)$$
 and $m_l = -l, \ldots, +l$.

Particle number at temperature T:

$$N = \sum_{l=0}^{+\infty} \sum_{m_l=-l}^{+l} \frac{1}{e^{(\epsilon_l - \mu)/(k_B T)} - 1} = N_0 + \sum_{l=1}^{+\infty} \frac{2l + 1}{e^{(\epsilon_l - \epsilon_0)/(k_B T)} - 1}$$

when $N_0 = 0 \implies T = T_{BEC}$

BEC on a sphere: noninteracting case

[AT, Salasnich, PRL 123, 160403 (2019)]

BEC on a sphere: interacting case

Popov theory to calculate the grand canonical potential:

$$\Omega = -\beta^{-1} \ln(\mathcal{Z}), \qquad \mathcal{Z} = \int \mathcal{D}[\bar{\psi}, \psi] \ e^{-S[\bar{\psi}, \psi]/\hbar},$$

where

$$S[\bar{\psi},\psi] = \int_0^{\beta\hbar} d\tau \, \int_0^{2\pi} d\varphi \, \int_0^{\pi} d\theta \, R^2 \sin(\theta) \, \mathcal{L}(\bar{\psi},\psi)$$

is the Euclidean action, and

$$\mathcal{L} = ar{\psi}(heta, arphi, au) \Big(\hbar \partial_{ au} + rac{\hat{L}^2}{2mR^2} - \mu \Big) \psi(heta, arphi, au) + rac{g}{2} |\psi(heta, arphi, au)|^4$$

is the Euclidean Lagrangian.

("dimensional" reduction in: [Móller et al., NJP 22, 063059 (2020)])

In the Bose-condensed phase

$$\psi(\theta,\varphi,\tau) = \psi_0 + \eta(\theta,\varphi,\tau)$$

Keeping up to $\sim \eta^2$ terms, expanding with spherical harmonics, and performing functional integration we get

$$\begin{split} \Omega(\mu,\psi_0^2) &= 4\pi R^2 \big(-\mu\psi_0^2 + g\psi_0^4/2\big) + \frac{1}{2}\sum_{l=1}^{\infty}\sum_{m_l=-l}^{l}E_l(\mu,\psi_0^2) \\ &+ \frac{1}{\beta}\sum_{l=1}^{\infty}\sum_{m_l=-l}^{l}\ln\Big(1-e^{-\beta E_l(\mu,\psi_0^2)}\Big), \end{split}$$

with $E_l(\mu, \psi_0^2) = \sqrt{(\epsilon_l - \mu + 2g\psi_0^2)^2 - g^2\psi_0^4}$.

Following [Kleinert, Schmidt, Pelster PRL **93**, 160402 (2004)] we impose $\frac{\partial\Omega}{\partial\psi_0}(\mu, \psi_0^2) = 0$, obtaining $\psi_0^2 = n_0(\mu)$ then, perturbatively $E_l(\mu, n_0(\mu)) = \sqrt{\epsilon_l(\epsilon_l + 2\mu)}$ and $\mu(n_0)$

Number density:

$$n(\mu) = -\frac{1}{4\pi R^2} \frac{\partial \Omega}{\partial \mu}(\mu, n_0(\mu)),$$

From $\mu(n_0)$ we calculate

$$n(\mu(n_0)) = n_0 + f_g^{(0)}(n_0) + f_g^{(T)}(n_0),$$

 $f_g^{(0)}(n_0), f_g^{(T)}(n_0)$: analytical results!

Critical temperature and condensate fraction

The critical temperature of the interacting system reads

$$k_B T_{\text{BEC}} = \frac{\frac{2\pi\hbar^2 n}{m} - \frac{gn}{2}}{\frac{\hbar^2 \beta_{BEC}}{2mR^2} \left(1 + \sqrt{1 + \frac{2gmnR^2}{\hbar^2}}\right) - \ln\left(e^{\frac{\hbar^2 \beta_{BEC}}{mR^2}\sqrt{1 + \frac{2gmnR^2}{\hbar^2}}} - 1\right)}.$$

and the condensate fraction

$$\frac{n_0}{n} = 1 - \frac{mg}{4\pi\hbar^2} - \frac{1}{4\pi R^2 n} \left[1 + \sqrt{1 + \frac{2gmnR^2}{\hbar^2}} \right] + \frac{mk_B T}{2\pi\hbar^2 n} \ln\left(e^{\frac{\hbar^2}{mR^2k_B T}\sqrt{1 + (2gmnR^2/\hbar^2)}} - 1\right).$$

 $R \rightarrow \infty$: $T_{\text{BEC}} \rightarrow 0$, Schick result for quantum depletion. [AT, Salasnich, PRL **123**, 160403 (2019)]

BKT transition on a sphere

The unbinding of vortex-antivortex dipoles at $T = T_{BKT}$ destroys the quasi long-range order.

[Ovrut, Thomas PRD 43, 1314 (1991)]: Kosterlitz-Nelson criterion on a sphere

$$k_B T_{BKT} = \frac{\pi}{2} \frac{\hbar^2 n_s^{(0)}(T_{BKT})}{m},$$

with the bare superfluid density:

$$n_s^{(0)} = n - rac{1}{k_B T} \int_1^{+\infty} rac{dl (2l+1)}{4\pi R^2} rac{\hbar^2 (l^2+l)}{2mR^2} rac{e^{E_l^B/(k_B T)}}{(e^{E_l^B/(k_B T)}-1)^2}.$$

BEC and BKT on the sphere

Usual 2D picture (thermodyn. limit) $nR^2 = 10^5$

Region of BEC only $nR^2 = 10^2$

BEC transition (red dashed) BKT=SF transition (black)

[AT, Salasnich, PRL 123, 160403 (2019)]

BEC and BKT on the sphere

- we used the Kosterlitz-Nelson criterion with $n_s^{(0)}$
- is $nR^2 = 10^2$ observable?
- low-energy finite-size limit: $\cot \delta_0 \rightarrow \text{const} \Rightarrow \text{nontrivial } g(a_{2D})$, see [Zhang, Ho, J. Phys. B **51**, 115301 (2018)]
- second sound as a probe of BKT transition, see [Ozawa, Stringari, PRL 112, 025302 (2014)]
 [AT, Cappellaro, Bighin, Salasnich, arXiv:2009.06491]

 \Rightarrow future work!

Outline

- Introduction on bubble traps
- Bose-Einstein condensation on the surface of a sphere
- Properties and challenges of shell-shaped condensates
- Summary and outlook

Properties and challenges of shell-shaped condensates

For the realistic trap parameters of NASA-JPL CAL experiment:

 $T_{BEC}^{bubble\ trap} \ll T_{BEC}^{harmonic\ trap}\ *$

(*from Hartree-Fock theory [Giorgini *et al.* J. Low T. Phys. (1997)])

[AT, Cinti, Salasnich, PRL **125**, 010402 (2020)] Density as a probe of the system temperature

[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

Path Integral Monte Carlo - superfluid fraction

[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

Outline

- Introduction on bubble traps
- Bose-Einstein condensation on the surface of a sphere
- Properties and challenges of shell-shaped condensates
- Summary and outlook

Summary and outlook

- I sketched how shell-shaped Bose-Einstein condensates are experimentally produced
- ♦ I analyzed T_{BEC} , T_{BKT} , and n_0/n for a spherical shell. → Further investigations on the BEC-BKT interplay
- ◊ Experiments can be challenging: to have a sufficient condensate fraction in ~ 10⁴ atoms you need a final temperature < 10 nK. ⇒ It is worth studying the finite-temperature properties
- Shell shaped Bose-Einstein condensates are a new configuration that the scientific community should start exploring

Thank you for your attention!

Main references:

A. Tononi and L. Salasnich, Bose-Einstein Condensation on the Surface of a Sphere, Phys. Rev. Lett. 123, 160403 (2019).
A. Tononi, F. Cinti, and L. Salasnich, Quantum Bubbles in Microgravity, Phys. Rev. Lett. 125, 010402 (2020).

in collaboration with

Luca Salasnich

Fabio Cinti

This presentation on www.andreatononi.com

Additional references

- N. Lundblad, R. A. Carollo, C. Lannert, et al. *Shell potentials for microgravity Bose-Einstein condensates*, npj Microgravity **5**, 30 (2019).
- D. C. Aveline, et al., Observation of Bose-Einstein condensates in an Earth-orbiting research lab, Nature **582**, 193 (2020).
- K. Frye, et al., The Bose-Einstein Condensate and Cold Atom Laboratory, arXiv:1912.04849
- - K. Padavić, K. Sun, C. Lannert, and S. Vishveshwara, Phys. Rev. A **102**, 043305 (2020).
- K. Sun, K. Padavić, F. Yang, S. Vishveshwara, and C. Lannert, Phys. Rev. A **98**, 013609 (2018).