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Abstract: We review our theoretical results of the sound propagation in two-dimensional (2D) systems
of ultracold fermionic and bosonic atoms. In the superfluid phase, characterized by the spontaneous
symmetry breaking of the U(1) symmetry, there is the coexistence of first and second sound. In
the case of weakly-interacting repulsive bosons, we model the recent measurements of the sound
velocities of 39K atoms in 2D obtained in the weakly-interacting regime and around the Berezinskii–
Kosterlitz–Thouless (BKT) superfluid-to-normal transition temperature. In particular, we perform
a quite accurate computation of the superfluid density and show that it is reasonably consistent
with the experimental results. For superfluid attractive fermions, we calculate the first and second
sound velocities across the whole BCS-BEC crossover. In the low-temperature regime, we reproduce
the recent measurements of first-sound speed with 6Li atoms. We also predict that there is mixing
between sound modes only in the finite-temperature BEC regime.

Keywords: two-dimensional systems; superfluid bosons; superfluid fermions; BCS-BEC crossover

1. Introduction

In this review paper, the propagation of the first and second sound in two-dimensional
(2D) systems of ultracold fermionic and bosonic atoms is examined in light of our current
theoretical findings. As is well known, the second sound exists only in the U(1) symmetry-
broken superfluid phase. We discuss a quite accurate determination of the superfluid
density in the case of weakly-interacting repulsive bosons, finding a good agreement
with the experiment to model the recent measurements [1] of the sound velocities of
39K atoms in 2D obtained in the weakly-interacting regime and around the Berezinskii–
Kosterlitz–Thouless (BKT) superfluid-to-normal transition temperature [2]. We also analyze
the first and second sound velocities across the whole BCS-BEC crossover for superfluid
attractive fermions. By considering 6Li atoms, we simulate and analyze the most recent
measurements [3] of the first sound velocity in the low-temperature regime. This velocity
is the only one triggered by a density probe because the decoupling of the density and
entropy fluctuations makes it possible [4]. The main results discussed here were presented
at the International Workshop “Quantum Transport with ultracold atoms” (Dresden, 2022).

According to Landau’s two-fluid theory [5] of superfluids, the total number density n
of a system in the superfluid phase can be written as

n = ns + nn , (1)

Symmetry 2022, 14, 2182. https://doi.org/10.3390/sym14102182 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14102182
https://doi.org/10.3390/sym14102182
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0817-4753
https://orcid.org/0000-0001-6110-2359
https://orcid.org/0000-0002-1941-4460
https://orcid.org/0000-0002-0023-3977
https://doi.org/10.3390/sym14102182
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14102182?type=check_update&version=1


Symmetry 2022, 14, 2182 2 of 10

where ns is the superfluid density, and nn is the normal density. At the critical temperature
Tc, nn = n, and correspondingly, ns = 0. Following Landau, in a superfluid, a local
perturbation excites two wave-like modes—first and second sound—which propagate
with velocities u1 and u2. These velocities are determined by the positive solutions of the
algebraic biquadratic equation

u4 − (c2
10 + c2

20)u
2 + c2

Tc2
20 = 0 . (2)

The first sound u1 is the largest of the two positive roots of Equation (2), while the
second sound u2 is the smallest positive one. In the biquadratic Equation (2), there is the
adiabatic sound velocity

c10 =

√
1
m

(
∂P
∂n

)
S̄,V

, (3)

where S̄ = S/N, as the entropy per particle, V = L2, as the 2D volume (area) of a square of
size L, and N is the total number of identical particles. There is also the entropic sound (or
Landau) velocity

c20 =

√√√√ 1
m

S̄2(
∂S̄
∂T

)
N,V

ns

nn
, (4)

where ns/nn is the ratio between the superfluid and normal density, m is the mass of each
particle, and the isothermal sound velocity is

cT =

√
1
m

(
∂P
∂n

)
T,V

, (5)

where P is the pressure, and T is the temperature. Thus, having the equation of state and
the superfluid fraction of the system under investigation, one can determine the first sound
velocity u1 and the second sound velocity u2 by solving Equation (2), namely

u1,2 =

√
1
2
(c2

10 + c2
20)±

1
2

√
(c2

10 + c2
20)

2 − 4c2
Tc2

20 . (6)

2. Weakly-Interacting 2D Bose Gas

The Helmholtz free energy [4] of a weakly-interacting two-dimensional gas of purely
repulsive identical bosons of mass m can be written as (h̄ = kB = 1)

F = F0 + FQ + FT =
g
2

N2

L2 +
1
2 ∑

p
Ep + T ∑

p
ln
[
1− e−Ep/T

]
, (7)

where F0 is the mean-field zero-temperature free energy, and g > 0 is the Bose–Bose
interaction strength. FT is the low-temperature free energy, and

Ep =

√
p2

2m

(
p2

2m
+ 2gn

)
(8)

is the familiar Bogoliubov spectrum of elementary excitations. For the sake of complete-
ness, we emphasize some formal analogy [6] between this Bogoliubov spectrum of bosonic
particles, which can be derived from the Gross–Pitaevskii equation [7,8], and the neural
spectrum, which can be deduced from the Amari equation of the brain [9]. Indeed, the neu-
ral field equation of Amari resembles an imaginary-time Gross–Pitaevskii equation with
a nonlocal term. The elementary (linearized) excitations of the Amari equation around a
uniform configuration are the analog of the Bologlibov spectrum of the Gross–Pitaevskii
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equation. The quantum correction FQ in the free energy is obviously ultraviolet divergent
and requires a regularization procedure. Dimensional regularization [10] leads to

FQ = −L2 m
8π

[
ln
(

εΛ

gn

)
− 2

η

]
(gn)2 , (9)

where εΛ = 4e−2γ−1/2/
(
ma2

2D
)

is a cutoff energy, γ = 0.577 is the Euler–Mascheroni
constant, a2D is the 2D s-wave scattering length, and

η =
mg
2π

(10)

is the adimensional gas parameter [2]. Moreover, one also finds

εΛ

gn
=

2π

N
e−2γ−1/2+2/η

η
. (11)

All the thermodynamic quantities can be obtained from the Helmholtz free energy of
Equation (7). For instance, the pressure P is given by

P = −
(

∂F
∂L2

)
N,T

, (12)

while the the entropy reads

S =

(
∂

∂T
F
N

)
N,L2

. (13)

Instead, the normal density nn can be extracted from the Landau formula

nn = −
∫ d2p

(2π)2
p2

2m
d fB(Ep)

dEp
, (14)

where fB(E) = 1/
(

eE/T − 1
)

is the Bose–Einstein distribution.
Actually, the Landau formula for the normal density does not take into account the

formation of quantized vortices and antivortices by increasing the temperature. These
quantized vortices are crucial for the 2D Bose gas to obtain the phenomenology predicted by
Berezinskii [11] and Kosterlitz–Thouless [12]. The presence of quantized vortices renormal-
izes the superfluid density, ns = n− nn. The renormalized superfluid density ns(t = +∞)
is obtained by solving the Nelson–Kosterlitz renormalization group equations [13]

∂t K−1(t) = 4π3y2(t)

∂t y(t) = [2− πK(t)] y(t) (15)

where K(t) = ns(t)/T, with ns(t) as the superfluid density at the adimensional fictitious
time t, and y(t) = exp[−µc(t)/T], which is the fugacity, where µc(t) is the vortex chemical
potential at the fictitious time t. In particular, the initial superfluid density ns(0) of the flow
is the one obtained from nn of Equation (14) as ns(0) = n− nn. The initial vortex chemical
potential is instead given by the expression µs(0) = π2ns(0)/(2m). We emphasize that, in
the determination of pressure and entropy, one should also take into account the vortex
contribution. However, in order to make the theoretical scheme more tractable, we have
included the quantized vortices only for the renormalized superfluid density. Another
relevant issue is the fact that, in the experiments, the superfluids have a finite size. To
describe consistently the finite size of the system, we solve Equation (15) up to a maximum
value tmax = ln(A1/2/ξ) of the adimensional fictitious time t, where A is the area of the
system, and ξ is the healing length, which is practically the size of the vortex core.

For 3D superfluids, the transition to the normal state is a BEC phase transition, while in
2D superfluids the transition to the normal state is something different: a topological phase
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transition. An important prediction of the Kosterlitz–Thouless transition is that, contrary
to the 3D case, in 2D, the superfluid fraction ns/n jumps to zero above the Berezinskii–
Kosterlitz–Thouless critical temperature TBKT . See Figure 1.
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Figure 1. Typical behavior of a superfluid fraction ns/n vs. adimensional temperature T/Tc in
three-dimensional (3D) and two-dimensional (2D) superfluid systems. Notice that only in the 2D case
is there a jump of the superfluid fraction at the Berezinskii–Kosterlitz–Thouless critical temperature
TBKT in the superfluid-to-normal phase trasition.

In Figure 2, we report our theoretical first and second sound velocities as a function of
the adimensional temperature in comparison with recent experimental data near TBKT [1].
As shown by the figure, the agreement between our theory and the experimental results is
quite good.

 0

 0.5

 1

 1.5

 2

 0.6  0.8  1  1.2  1.4  1.6

Figure 2. Sound velocities vs. adimensional temperature. Here, vB = gn provides the Bogoliubov
velocity, N = 2178 is the number of atoms, and η = 0.102. The blue line is our first sound velocity u1,
while the green line is our second sound velocity u2. The dots with error bars are the experimental
data obtained by Christodoulou et al. [1]. Figure adapted from Ref. [2].

Another relevant phenomenon is the hybridization with quasi-crossing of the first
sound u1 and second sound u2, which appears at a characteristic temperature Thyb. In
particular, when the hybridization temperature Thyb is crossed, there is an inversion of the
role of the density and entropy oscillations in the propagation of sounds. As discussed in
detail in Ref. [2], a density perturbation excites mainly u1 below the Thyb and instead probes
mainly u2 above Thyb. The opposite occurs by imposing a temperature gradient in the
superfluid. Numerically, we found that Thyb grows by increasing the repulsive Bose–Bose
interaction strength, and eventually, Thyb coincides with TBKT [2].
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3. 2D Fermi Gas in the BCS-BEC Crossover

In 2004, the 3D BCS-BEC crossover was observed with ultracold gases made of two-
component attractive fermionic 40K or 6Li atoms [14–16]. This crossover was obtained using
a Fano–Feshbach resonance to change the 3D s-wave scattering length aF of the interatomic
potential. More recently, the 2D BEC-BEC crossover was achieved experimentally [17,18]
with a Fermi gas of two-component 6Li atoms.

Two-dimensional realistic interatomic attractive potentials always have a bound state,
in contrast to the 3D situation. In particular [19], the binding energy εB > 0 of two fermions
is related to the 2D scattering length aF by

εB =
4

e2γ

1
ma2

F
, (16)

where γ = 0.577 is the Euler–Mascheroni constant. Moreover, the attractive interaction of
strength g > 0 of the s-wave pairing is related to the binding energy by the expression [20]

1
g
=

1
2L2 ∑

k

1
k2

2m + 1
2 εB

. (17)

To study the 2D BCS-BEC crossover, we adopt the formalism of functional integra-
tion [21]. The partition function Z of the uniform system with fermionic fields ψs(r, τ) at
temperature T, in a two-dimensional volume V = L2, with chemical potential µ, reads

Z =
∫
D[ψs, ψ̄s] exp {−S} , (18)

where β ≡ 1/T, and

S =
∫ β

0
dτ
∫

L2
d2r L (19)

is the Euclidean action functional with Lagrangian density

L = ψ̄s

[
∂τ −

1
2m
∇2 − µ

]
ψs − g ψ̄↑ ψ̄↓ ψ↓ ψ↑, (20)

where g > 0 is the strength of the attractive s-wave coupling between fermions with
opposite spin.

In particular, we are interested in the grand potential Ω, given by

Ω = − 1
β

ln (Z) ' − 1
β

ln
(
Zm fZg

)
= Ωm f + Ωg , (21)

where
Zm f =

∫
D[ψs, ψ̄s] exp {−Se(ψs, ψ̄s, ∆0)} (22)

is the mean-field partition function, and

Zg =
∫
D[ψs, ψ̄s]D[η, η̄] exp

{
−Sg(ψs, ψ̄s, η, η̄, ∆0)

}
(23)

is the partition function of Gaussian pairing fluctuations.
After functional integration over quadratic fields, one finds that the mean-field grand

potential reads [22]

Ωm f =
∆2

0
g

L2 + ∑
k

(
k2

2m
− µ− Esp(k)−

2
β

ln (1 + e−β Esp(k))

)
, (24)
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where

Esp(k) =

√(
k2

2m
− µ

)2

+ ∆2
0 (25)

is the spectrum of fermionic single-particle excitations.
Instead, the Gaussian grand potential is given by

Ωg =
1

2β ∑
Q

ln det(M(Q)) , (26)

where M(Q) is the inverse propagator of the Gaussian fluctuations of pairs, and Q =
(q, iΩm) represents the 4D wavevector, where Ωm = 2πm/β are the Matsubara frequencies,
and q is the 3D wavevector [23].

The sum over the Matsubara frequencies is quite complicated, and it does not give a
simple expression. An approximate formula [24] is

Ωg '
1
2 ∑

q
Ecol(q) +

1
β ∑

q
ln (1− e−β Ecol(q)) , (27)

where
Ecol(q) = ω(q) (28)

is the spectrum of bosonic collective excitations with ω(q) derived from

det(M(q, ω)) = 0 . (29)

It is important to stress that the zero-point energy of the collective excitations is diver-
gent. However, by using the convergence factor renormalization procedure (see Ref. [10]
for a review of renormalization methods for the zero-point energy of ultracold atoms),
one extracts a reliable finite contribution. In Figure 3, we plot the pressure P = −Ω/L2 of
the 2D Fermi gas in the BCS-BEC crossover comparing our zero-temperature theoretical
results [25] with the available experimental data [17]. The agreement between theory and
experiment is extremely good including the Gaussian fluctuations. For the specific investi-
gation of the Gaussian fluctuations in the BEC regime of the 2D crossover with analytical
and numerical techniques, see also Refs. [26,27]. Quite remarkably, our T = 0 results with
Gaussian fluctuations are also in good agreement with the auxiliary-field path integral
calculations [28] and diffusion Monte Carlo simulations [29].

GPF EOS

Bosonic limit

-5 0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

Log( B/ F)

P
/P
id

Figure 3. Zero-temperature scaled pressure P/Pid vs. scaled binding energy εB/εF. Filled squares
with error bars: experimental data of Makhalov et al. [17]. Solid line: our regularized Gaussian pair
fluctuation (GPF) theory. Figure adapted from Ref. [30].
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We are now interested in the temperature dependence of the superfluid density ns(T)
of the system. At the Gaussian level, ns(T) depends only on fermionic single-particle
excitations Esp(k) [31]. Beyond the Gaussian level, bosonic collective excitations Ecol(q)
also contribute [32]. Thus, we assume the following Landau-type formula for the superfluid
density [25]

ns(T) = n− β
∫ d2k

(2π)2 k2 eβEsp(k)

(eβEsp(k) + 1)2
− β

2

∫ d2q
(2π)2 q2 eβEcol(q)

(eβEcol(q) − 1)2
. (30)

This bare superfluid density can be renormalized by using the flow Equations (15) of
Kosterlitz–Thouless–Nelson, which take into account the effect of quantized vortices and
antivortices [12,13], by using Equation (30) as the initial condition. In Figure 4, we plot the
BKT critical temperature obtained by using the Nelson–Kosterlitz criterion [13]:

TBKT =
π

8m
ns(TBKT) . (31)

The figure clearly shows that the mean-field prediction (dashed line) is meaningful
only in the deep BCS regime of the 2D crossover. Instead our beyond-mean-field results
(solid line), which include Gaussian fluctuations, are in reasonably good agreement with
the available experimental data [33] (filled circles). In Refs. [30,34], we found that TBKT
derived with the Nelson–Kosterlitz criterion slightly overestimated the critical temperature
calculated by solving the renormalization group of Equations (15).

Figure 4. Our theoretical predictions [25] for the Berezinskii–Kosterlitz–Thouless critical temperature
TBKT compared to the experimental observation [33] (filled circles with error bars). Figure adapted
from Ref. [25].

Having the equation of state and the superfluid density at finite temperature, we
calculated the first sound velocity u1 and the second sound velocity u2 in the 2D BCS-BEC
crossover by using Equation (6). We also analyzed the amplitude modes W1and W2 of the
response to a density perturbation [35], i.e.,

δn(x, t) = W1δn1(x± u1t) + W2δn2(x± u2t) (32)

where
W1

W1 + W2
=

(u2
1 − c2

20) u2
2

(u2
1 − u2

2) c2
20

(33)
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and
W2

W1 + W2
=

(c2
20 − u2

2) u2
1

(u2
1 − u2

2) c2
20

. (34)

In Figure 5, we show our theoretical determination of the sound velocities and density
responses (insets) as a function of the interaction strength (actually the logarithm of the
adimensional binding energy εB/εF) at quite low temperature T. The comparison with the
experimental measurements of the first sound velocity (filled diamonds) suggest that our
theoretical framework is quite good. It is important to stress that in the BCS regime the
speed of second sound is rapidly approaching zero.

Figure 5. First sound velocity u1 (red solid line) and second sound velocity u2 (blue dashed line)
along the BCS-BEC crossover, at temperature T/TF = 0.01, with TF = εF, and vF =

√
2εF/m. Green

diamonds: recent measurements of the first sound [3] Right inset: relative contribution to the density
response of u1 (red solid line) and u2 (blue dashed line). Figure adapted from Ref. [4].

In Figure 6, we report instead the sound velocities as a function of the temperature T
for three values of the interaction strength (the three panels correspond to increasing values
of the adimensional binding energy εB/εF). The density responses shown in the insets
strongly suggest that a mixing between the first sound and second sound occurred only
in the finite-temperature BEC regime. Notice that taking into account Equations (3)–(6),
(33) and (34), the presence of mixing means that the adiabatic sound velocity c10 was quite
different with respect to the isothermal sound velocity cT . Conversely, if c10 ' cT , then
u1 ' c10, u2 ' c20, and consequently, W2 ' 0. For comparison, for the 3D unitary Fermi gas
we recently showed [36] that, in contrast to 3D liquid helium, near the critical temperature,
the mixing of the first and second sound was quite strong.

Figure 6. Adimensional first sound velocity u1/vF (red solid line) and adimensional second sound
velocity u2/vF (blue dashed line) plotted in terms of the rescaled temperature T/TF, for three
different values of the crossover parameter: ln(εB/εF) = −5 (BCS regime), ln(εB/εF) = 0 (unitary
regime), and ln(εB/εF) = 5 (BEC regime). Insets: relative contribution to the density responses
W1,2/(W1 + W2) of u1 and u2. Figure adapted from Ref. [4].
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4. Conclusions

We showed that the first and second sound of bosonic and fermionic superfluids
could be derived adopting Landau’s two-fluid theory, which required the equation of state
and the superfluid fraction of the system under investigation. In the case of a 2D weakly-
interacting Bose gas, we found that the comparison of our theory with recent measurements
near TBKT was quite good. In the BCS-BEC crossover of the 2D Fermi gas, we proved that
to obtain a good agreement with the experimental data for the equation of state, the critical
temperature TBKT , and the sound modes, both fermionic single-particle excitations and
bosonic collective excitations were needed. In conclusion, it is important to stress that all
the results discussed here are valid in the collisional regime, where ωτ � 1, with ω as the
frequency of the sound mode and τ as the collision time of quasiparticles. However, in
the collisionless regime (ωτ � 1), the role of the superfluidity in 2D systems of ultracold
atoms has not been fully clarified. In Ref. [37], we found that the experimental results of
sound and sound damping in a two-dimensional collisionless Bose gas of 87Rb atoms [38]
were better reproduced below the critical temperature of the superfluid-to-normal phase
transition by the Andreev–Khalatnikov equations of a collisionless superfluid with respect
to the finding of the Vlasov–Landau equation [39,40]. Finally, for the sake of completeness,
we suggest reading the very recent review paper of Hu, Yao, and Liu [41], which contains a
detailed historical account of the second sound in ultracold atoms.
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