
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Corso di Laurea Magistrale in Fisica

Tesi di Laurea

Bose-Einstein Condensation and Superfluidity

in 3D and 2D bosons

Relatore Laureando

Prof. Luca Salasnich Andrea Tononi

Controrelatore

Prof. Francesco Ancilotto

Anno Accademico 2017/2018
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”In the sciences there need not be a
progress of another sort. [...] We are
all deeply accustomed to seeing science
as the one enterprise that draws con-
stantly nearer to some goal set by na-
ture in advance. But need there be any
such goal? [...] For many men the abo-
lition of that teleological kind of evolu-
tion was the most significant and least
palatable of Darwin’s suggestions. The
Origin of Species recognized no goal set
either by God or nature. Instead, natu-
ral selection, operating in the given en-
vironment and with the actual organ-
isms presently at hand, was responsible
for the gradual but steady emergence of
more elaborate, further articulated, and
vastly more specialized organisms.”
— Thomas S. Kuhn, The Structure of

Scientific Revolutions [26]
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Abstract

The refinement and the combination of laser cooling and evapora-
tive cooling in dilute systems of alkali atoms lead to the achieve-
ment of Bose-Einstein condensation in 1995. Nowadays there is a
fruitful interplay between theoretical and experimental results: in
this context, the study of uniform Bose gases plays an important
role in the comprehension of the static and dynamic properties of
a bosonic system. Here we use quantum field theory, within the
approach of functional integration, to study an homogeneous sys-
tem of weakly-interacting bosonic cold atoms. After characterizing
their thermodynamical properties, we derive - at a gaussian level -
the number density and the superfluid density in three and in two
spatial dimensions, expressed as functions of the condensate den-
sity and the temperature. Since the equations derived are valid for
a generic interaction potential, we implement these formulas for
bosons with a zero-range interaction, providing also an extension
of these results with the inclusion of a finite-range interaction.
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Introduction

The study of Bose-Einstein condensation and superfluidity has an ideal origin in the
1924-25 works of Bose and Einstein [9, 14, 15], who predicted the possibility to have a
macroscopic occupation of the lowest energy single particle state of the system. While
superfluidity in He-II has been experimentally studied since the late thirties [22], the
achievement of Bose-Einstein condensation (BEC) has been possible with cold alkali
atoms systems only in 1995. In that year condensation has been observed first by a group
lead by Carl Wieman and Eric Cornell of the University of Colorado at Boulder [13], but
few months later a group lead by Wolfgang Ketterle at the MIT obtained better results,
with higher densities [3]. In order to observe quantum degeneracy it was necessary to
reach low temperatures, but also low densities, so that the system does not solidify. This
has been possible through the combined use of laser cooling techniques and evaporative
cooling techniques [23].

Nowadays, the study of cold atoms systems focuses on a large variety of aspects [12] and
there is a fruitful interplay between experimental and theoretical results. One of the key
aspects of the success of cold atoms systems is constituted by the possibility of tuning
the interaction strength between atoms by the means of a Feshbach resonance [11], which
provides a very useful tool in the test of our theories.

In the thesis we study, adopting quantum field theory within the formalism of functional
integration [2], an homogeneous bosonic system of identical particles in three and in
two spatial dimensions. The study of interacting homogeneous condensates [4, 42] is
fundamental to understand the basic physical behavior of a BEC and began from the
quantum depletion of Bogoliubov [8] in D = 3 and the papers on the one-loop corrections
of the energy of Lee and Yang [30], Lee Yang and Huang [31] in D = 2. In two dimensions
Schick found the equation of state for a uniform repulsive gas [46], improved by Popov
[41], while Mora and Castin obtained the beyond-gaussian grand potential [37]. In this
work, we reproduce some of these results in an unified framework. Moreover, for bosons
with a zero-range and a finite-range interaction, we find an explicit implementation of the
Josephson relation [21] which links the superfluid density with the condensate density
and the temperature.
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Figure 1: Velocity distribution of a cloud of alkali atoms, obtained after a free expansion of the
cloud with imaging techniques. The left picture represents an expanding cloud slightly above the
condensation critical temperature, while the central and the right pictures show the occurrence
of Bose-Einstein condensation under the critical temperature, represented by the central peak.
The figure is obtained from the first observation of Bose-Einstein condensation by Wieman and
Cornell group [13].

This thesis is constituted by three main chapters and two appendices.

In the first chapter we will construct the bosonic functional integral and we will calculate
the gaussian grand potential of the system, introducing the basic formalism and the
techniques which we will employ in the following chapters.

In the second chapter we will derive the thermodynamical properties of an interacting
cold atoms system, together with an equation of the system number density expressed
as a function of the condensate density and the temperature. We will also calculate the
superfluid density of the system following both Lev Landau historical approach and an
equivalent microscopic derivation.

In the third chapter we will focus on the study of bosons interacting with a zero-range
and with a finite-range interaction, providing an explicit implementation of the results
obtained in the second chapter.

In the appendices, we describe how to calculate a summation over Matsubara frequencies
and we present a parametrization of the bosonic field alternative to the one used in the
first chapter.



Chapter 1

Functional integration of the
bosonic field

The first chapter begins with the basic formalism of functional integration, from the
introduction of second quantization and coherent states, to the calculation of the parti-
tion function of the system as the functional integral of the bosonic field. We explicitly
perform the gaussian integration of the bosonic field, obtaining the grand potential of
the system. In the last section of this chapter we introduce the technique of dimensional
regularization, which will be used in the next chapters.

1.1 Second quantization and bosonic coherent states

Let us consider a D-dimensional system of N spinless bosonic atoms with mass m inter-
acting with V (~r, ~r ′). All the properties of the system are enclosed in the first quantization
hamiltonian

Ĥ =
N∑
i=1

ĥ(~ri) +
1

2

N∑
i,j=1
i 6=j

V (~ri, ~rj) (1.1)

where ĥ(~ri) is the single particle hamiltonian

ĥ(~ri) = −~2∇2
i

2m
+ U(~ri) (1.2)

and U(~r) is the external potential used for trapping the atoms.

The hamiltonian in Eq. (1.1) can be rewritten in the second-quantized form [17]

Ĥ =
∑
α

εα ĉ
+
α ĉα +

∑
αβγδ

Vαβγδ ĉ
+
α ĉ

+
β ĉδ ĉγ (1.3)

5
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where ĉ+
α and ĉα are the bosonic creation and destruction operators of the Fock state

|α〉, and the eigenenergies εα
ĥ |α〉 = εα |α〉 (1.4)

are the eigenvalues of the noninteracting single-particle hamiltonian ĥ. Moreover we
have defined the interaction matrix element

Vαβγδ =

∫
dDr dDr′ φ∗α(~r)φ∗β(~r ′)V (~r, ~r ′)φγ(~r ′)φδ(~r) (1.5)

where φα(~r) = 〈~r|α〉.

Defining the field operator ψ̂(~r) as

ψ̂(~r) =
∑
α

ĉαφα(~r) (1.6)

the second quantization hamiltonian (1.3) can be rewritten in the form

Ĥ =

∫
dDr ψ̂+(~r)

(
− ~2∇2

2m
+U(~r)

)
ψ̂(~r)+

1

2

∫
dDrdDr′ ψ̂+(~r)ψ̂+(~r ′)V (~r, ~r ′) ψ̂(~r ′)ψ̂(~r)

(1.7)
In the following we will concentrate on homogeneous bosonic systems, where the external
potential is U(~r) = 0. Depending on the physical phenomena under examination, this
assumption may prove crucial to obtain analytical equations for an interacting system.

Let us now introduce the bosonic coherent states: a coherent state |ψ〉 can be written in
the most general way as the product over all possible single-mode coherent states |cα〉,
namely

|ψ〉 =
∏
α

|cα〉 (1.8)

In particular, a single-mode coherent state |cα〉 is defined as the eigenstate of the de-
struction operator ĉα with eigenvalue cα, thus

ĉα |cα〉 = cα |cα〉 (1.9)

For a bosonic many-particle system one can show that the single-mode coherent state
|cα〉 can be written as a superposition of all the possible n bosons Fock states, i.e.

|cα〉 = e−|cα|
2/2

∞∑
n=0

(ĉα)n
√
nα
|nα〉 (1.10)

Remembering that the n-bosons Fock state is given by |nα〉 = (ĉ+α )n√
nα
|0〉, we can rewrite

the single-mode coherent state as

|cα〉 = e−|cα|
2/2 eĉαĉ

+
α |0〉 (1.11)
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Finally, substituting this into equation (1.8) we explicitly obtain the expression of the
coherent state

|ψ〉 = e−
∑
α |cα|

2/2 e
∑
α ĉαĉ

+
α |0〉 (1.12)

Since the single-mode coherent states are normalized 〈ψi|ψi〉 = 1, it follows that the
coherent state is also normalized, namely 〈ψ|ψ〉 = 1. Nevertheless one should also
consider that neither single-mode coherent states, nor coherent states are orthonormal.
In particular the overlap between the coherent states |ψ〉 =

∏
α |cα〉 and |φ〉 =

∏
α |dα〉

reads

〈ψ|φ〉 = e−
1
2

∑
α[c̄α(cα−dα)−(c̄α−d̄α)dα] (1.13)

where c̄α denotes the complex coniugate of cα and d̄α the complex coniugate of dα.

Since a single-mode coherent state constitutes a complete base of the bosonic Fock space,
we can write Dirac’s completeness relation as

1 =

∫
dc̄α dcα

2πi
|cα〉 〈cα| (1.14)

This property induces a more general completeness relation, written in terms of the
coherent state |ψ〉, as

1 =

∫
d[ψ̄, ψ] |ψ〉 〈ψ| =

∫ ∏
α

dc̄α dcα
2πi

|cα〉 〈cα| (1.15)

The coherent states provide a connection between first and second quantization [44].
One can show that the eigenstate of the field operator ψ̂(~r) in second quantization is the
Schrödinger field ψ(~r), namely

ψ̂(~r) |ψ〉 = ψ(~r) |ψ〉 (1.16)

which shows that the Schrödinger field can be written as

ψ(~r) =
∑
α

cαφα(~r) (1.17)

This connection shows that the Schrödinger field ψ(~r) and cα are the same field in
reciprocal space, so that we can also write the completeness relation

1 =

∫ ∏
~r

dψ̄(~r) dψ(~r)

2πi
|ψ〉 〈ψ| (1.18)

Moreover we find that the superposition of two coherent states is

〈ψ|φ〉 = e−
1
2

∫
dDr[ψ̄(~r)(ψ(~r)−φ(~r))−(ψ̄(~r)−φ̄(~r))φ(~r)] (1.19)
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The property (1.18) is fundamental for calculating the trace of a quantum mechanical
operator. Given a generic operator Â the trace operation Tr[Â] is defined as

Tr[Â] =
∑
n

〈n| Â |n〉 (1.20)

where |n〉 is a complete set of Hilbert space states. Inserting the identity (1.18) inside
the braket of the previous equation we can write

Tr[Â] =
∑
n

∫ ∏
~r

dψ̄(~r) dψ(~r)

2πi
〈n|ψ〉 〈ψ| Â |n〉 (1.21)

Since we are working with bosonic coherent states, we can exchange the brakets inside
the integral without any effect on them and, using again the completeness relation 1 =∑

n |n〉 〈n| to eliminate the states |n〉, we get

Tr[Â] =

∫ ∏
~r

ψ̄(~r) dψ(~r)

2πi
〈ψ| Â |ψ〉 (1.22)

which gives the trace operation as an integral over all the possible eigenvalues of the
single mode coherent-states.
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1.2 Construction of the functional integral

The thermodynamical properties of a system of bosonic particles can be described cal-
culating the grand canonical partition function

Z = Tr[e−β(Ĥ−µN̂)] (1.23)

where µ is the chemical potential of the system, Ĥ is the hamiltonian of Eq. (1.7) and

N̂ =

∫
dDr ψ̂+(~r)ψ̂(~r) (1.24)

is the number operator in second quantization.

Using the trace definition of Eq. (1.22) we calculate the grand canonical partition
function Z as

Z =

∫
d[ψ̄0, ψ0] 〈ψ0| e−β(Ĥ−µN̂) |ψ0〉 (1.25)

The main problem of this expression is that the expectation value 〈ψ0| e−β(Ĥ−µN̂) |ψ0〉
cannot be calculated directly. This issue can be solved by formally writing β in the
exponential as

β =
M∆τ

~
(1.26)

where M is a large integer and ∆τ is a small imaginary time interval. As we will
see during the functional integral construction, this definition allows us to formally
introduce the time dependence of the bosonic field in the equations. Another advantage
is the possibility to express the exponential as the product of M equal exponentials

e−
∆τ
~ (Ĥ−µN̂). In particular, we calculate the integrand of Eq. (1.25) introducing a total

number of M−1 identities in the form of Eq. (1.18) between each of the M exponentials,
so that

〈ψ0| e−β(Ĥ−µN̂) |ψ0〉 = 〈ψ0| e−
∆τ
~ (Ĥ−µN̂) · · · e−

∆τ
~ (Ĥ−µN̂) |ψ0〉 =

=

∫ M−1∏
j=1

d[ψ̄j , ψj ]
M∏
j=1

〈ψj | e−
∆τ
~ (Ĥ−µN̂) |ψj−1〉

(1.27)

The idea behind this procedure is to take the limit M → ∞, for which the imaginary
time interval ∆τ becomes infinitesimal. In this limit, one can approximate the braket in
the third member of Eq. (1.27) by making a negligible error, according to the relation

〈ψj | e−
∆τ
~ (Ĥ−µN̂) |ψj−1〉 = 〈ψj |ψj−1〉 e−

∆τ
~ (E[ψ̄j ,ψj ]−µN [ψ̄j ,ψj ]) + o((∆τ)2) (1.28)

where E[ψ̄j , ψj ] is the energy eigenvalue

E[ψ̄j , ψj ] =

∫
dDr ψ̄j(~r)

(
− ~2∇2

2m
+ U(~r)

)
ψj(~r)+

1

2

∫
dDr dDr′ ψ̄j(~r)ψ̄j(~r

′)V (~r, ~r ′)ψj(~r
′)ψj(~r) (1.29)
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and N [ψ̄j , ψj ] is the number operator eigenvalue

N [ψ̄j , ψj ] =

∫
dDr ψ̄j(~r)ψj(~r) (1.30)

Due to the property of Eq. (1.19) we can express the overlap between the coherent states
as

〈ψj |ψj−1〉 = e−
∆τ
2

∫
dDr [ψ̄j(~r)

(ψj(~r)−ψj−1(~r))

∆τ
−

(ψ̄j(~r)−ψ̄j−1(~r))

∆τ
ψj(~r)] (1.31)

Formally, in the M → ∞ limit we introduce the continuous imaginary time variable
τ = j∆τ , identifying the bosonic complex field ψ(~r, τ) as

ψ(~r, τ) = ψj(~r) (1.32)

The imaginary time τ definition also allows us to define the time derivatives

∂τψ(~r, τ) =
(ψj(~r)− ψj−1(~r))

∆τ
(1.33)

Now, we take the definition of Eq. (1.33) together with Eqs. (1.29), (1.30) and (1.31)
and insert them in the partition function (1.25). After some calculations one obtains the
grand canonical partition function Z expressed as the functional integral of the bosonic
complex field ψ(~r, τ)

Z =

∫
D[ψ̄, ψ] e−

S[ψ̄,ψ]
~ (1.34)

where

S[ψ̄, ψ] =

∫ β~

0
dτ

∫
LD

dDrL(ψ̄, ψ) (1.35)

is the euclidean (with imaginary time) action and

L = ψ̄(~r, τ)

(
~∂τ −

~2∇2

2m
− µ

)
ψ(~r, τ) +

1

2

∫
dDr′ ψ̄(~r, τ)ψ̄(~r ′, τ)V (~r, ~r ′)ψ(~r ′, τ)ψ(~r, τ)

(1.36)

is the lagrangian density of the system.

The knowledge of the partition function Z is fundamental to obtain the thermodynamics
of the system, that can be derived from the grand potential

Ω = − 1

β
ln(Z) (1.37)

which we will be explicitly calculated in the next section.

Before the end of this section, let us briefly discuss the interaction potential V (~r, ~r ′)
between bosons. In order to maintain a general approach we do not specify the form of
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the two-body interaction V (~r, ~r ′), however, we will assume that the interaction potential
depends only on the distance ~r − ~r ′ between atoms

V (~r, ~r ′) = V (~r − ~r ′) (1.38)

This simplified dependence allows us to express the interaction potential as the Fourier
series

V (~r − ~r ′) =
1

LD

∑
~k

ei
~k·(~r−~r ′)V (~k) (1.39)

where the Fourier components V (~k) are given by

V (~k) =

∫
dDr e−i

~k·(~r−~r ′) V (~r − ~r ′) (1.40)

In the next section we will introduce the phenomenon of the spontaneous symmetry
breaking of the global U(1) symmetry of the lagrangian (1.36). This phenomenological
consideration will allow us to calculate the partition function Z as the functional integral
of the field fluctuations around the uniform field configuration of the broken symmetry
phase. In particular, we will obtain a gaussian (one-loop) expression for the grand
potential (1.37) of the bosonic system.
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1.3 Functional integration of the bosonic field

In this section we perform the functional integration of the partition function Z in order
to obtain the grand potential Ω of the bosonic cold atoms system.

The grand canonical partition function Z, in the form the functional integral of Eq.
(1.34), can be thought as a way to weight over all the possible configurations of the
system, given by the complex field ψ(~r, τ). It is interesting to notice that there are
different field configurations which produce the same lagrangian (1.36), i.e. that give the
same contribution to the partition function. In particular, let us consider the following
phase-shifted complex field ψ′(~r, τ) given by

ψ′(~r, τ) = eiαψ(~r, τ), α ε R (1.41)

where α is a real constant. We see that the lagrangian (1.36) is invariant under this
transformation, namely

L(ψ̄′, ψ′) = L(ψ̄, ψ) (1.42)

One usually describe this property by saying that the lagrangian is invariant under the
U(1) global phase symmetry. For this reason, under the hypothesis that the global
phase symmetry is also respected by the ground state of the system, we must conclude
that a field configuration ψ(~r, τ) and its opposite −ψ(~r, τ) = eiπψ(~r, τ) are equally
probable and that the expectation value of the bosonic field must be zero: this means
that, on average, the system does not contain any particles. The problem can be solved
by introducing the concept of spontaneous symmetry breaking: the idea is that the
symmetry of the lagrangian is not shared by the ground state of the system, which
acquires a non-zero expectation value. The crucial point is that the symmetry is realized
because every broken-symmetry ground state can be realized with the same probability,
but the system cannot spontaneously and instantaneously go from one ground state
to another equivalent because of the infinite energy that this operation would cost in
the thermodynamic limit. We include this fundamental phenomenological aspect in our
theory by using the bosonic field parametrization

ψ(~r, τ) = ψ0 + η(~r, τ) (1.43)

where η(~r, τ) is the complex field describing the fluctuation around the real, uniform
in space and constant in time field configuration ψ0, assumed by the system in the
broken-symmetry phase.

Substituting the expressions above in the lagrangian (1.36) we obtain

L = −µψ2
0 + η̄(~r, τ)

(
~∂τ −

~2∇2

2m
− µ

)
η(~r, τ)− µψ0(η̄(~r, τ) + η(~r, τ)) + Lint (1.44)
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with

Lint =
1

2

∫
dDr′ V (~r − ~r ′)

(
ψ4

0 + ψ3
0(η̄(~r ′, τ) + η̄(~r, τ) + η(~r ′, τ) + η(~r, τ)) +

ψ2
0(η̄(~r ′, τ)η̄(~r, τ) + η̄(~r ′, τ)η(~r, τ) + η̄(~r ′, τ)η(~r ′, τ)+

η̄(~r, τ)η(~r, τ) + η̄(~r, τ)η(~r ′, τ) + η(~r, τ)η(~r ′, τ))
) (1.45)

This lagrangian has been calculated neglecting terms in η(~r, τ) and η̄(~r, τ) greater than
second order, namely working under the hypothesis that the fluctuations around the
mean field configuration ψ0 of the system are small and noninteracting with each other.
One usually refer to this approach as the gaussian, or one-loop, approximation. In the
lagrangian (1.44) we have also omitted some terms containing time derivatives, which
are zero due to the imaginary time periodicity of the fields.

Given the lagrangian, the action (1.35) can be written as

S[η̄, η] = β~LDµψ2
0 +

∫ β~

0
dτ

∫
LD

dDr

[
η̄(~r, τ)

(
~∂τ −

~2∇2

2m
− µ

)
η(~r, τ)−

µψ0(η̄(~r, τ) + η(~r, τ)) + Sint[η̄, η]

] (1.46)

with

Sint[η̄, η] =

∫ β~

0
dτ

∫
LD

dDrLint(η̄, η) (1.47)

We now express the action of the system in the Fourier space, where the functional
field integration can be performed in an explicit way. This can be done introducing the
Fourier series of the fluctuation fields, using the convention

η(~r, τ) =
1√
LD

∑
~k ωn

ei
~k·~re−iωnτη(~k, ωn),

η̄(~r, τ) =
1√
LD

∑
~k ωn

e−i
~k·~reiωnτ η̄(~k, ωn),

η(~k, ωn) =
1

β~
√
LD

∫ β~

0
dτ

∫
LD

dDr e−i
~k·~reiωnτη(~r, τ),

η̄(~k, ωn) =
1

β~
√
LD

∫ β~

0
dτ

∫
LD

dDr ei
~k·~re−iωnτ η̄(~r, τ) (1.48)

Although it will not be written explicitly for simplicity of notation, the sum over ~k does
not contain the zero-momentum state, since the homogeneous Fourier component of the
field has already been set apart with the parametrization (1.43) of the bosonic field.

One can easily obtain the dimension of the Fourier components of the fluctuation field
using dimensional analysis

[η(k)] = [LD] [η̄(k)] = [LD]
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where k = (~k, ωn) denotes the D+1 wavevectors and ωn = 2πn
β~ are the bosonic Matsubara

frequencies [2].

Another important property for calculating the Fourier transform of the action S[η̄, η]
is the D + 1-dimensional Fourier representation of the delta function

δ(~k − ~k ′) δ(ωn − ωn′) =

∫
LD

dDr

LD
e−i(

~k−~k ′)·~r
∫ β~

0

dτ

β~
ei(ωn−ωn′ )τ (1.49)

We substitute the Fourier components of Eq. (1.48) in the action (1.47) and use the
delta function definition (1.49) to integrate on ~r and τ coordinates, obtaining the action
in the Fourier space

S[η̄(k), η(k)] = −β~LDµψ2
0 +

β~
∑
~k ωn

[
η̄(k)

(
− i~ωn +

~2k2

2m
− µ+

ψ2
0

2
(V (~k) + V (−~k))

)
η(k)

]
+

β~
∑
~k ωn

[
− µψ0

√
LD
(
η̄(k) + η(k)

)
δ(~k)δ(ωn) +

1

2
ψ4

0L
DV (~k) δ(~k) +

+ ψ2
0 V (~k = 0) η̄(k)η(k) +

1

2
ψ2

0 V (~k)
(
η̄(k)η̄(−k) + η(k)η(−k)

)]
(1.50)

In this action appears the zero-wavevector Fourier component of the interaction potential
V (~k = 0), which is usually defined as the zero-range (or contact) interaction strength
g0, according to

g0 = V (~k = 0) =

∫
dDr V (~r) (1.51)

Taking into account this definition, we identify the wavevector-independent part of the
action (1.50) as the action of homogeneous system

S0 = β~LD
(
− µψ2

0 +
1

2
g0ψ

4
0

)
(1.52)

Moreover we consider that, since the sum over wavevectors ~k in Eq. (1.50) does not
include the zero component, the linear terms in η̄(k) and η(k) can be deleted due to the
presence of the D + 1-dimensional delta function, leading to the action

S[η̄(k), η(k)] = S0 +

β~
∑
~k ωn

[
η̄(k)

(
− i~ωn +

~2k2

2m
− µ+ g0ψ

2
0 +

ψ2
0

2
(V (~k) + V (−~k))

)
η(k)+

1

2
ψ2

0 V (~k)(η̄(k)η̄(−k) + η(k)η(−k))

]
(1.53)



1.3. FUNCTIONAL INTEGRATION OF THE BOSONIC FIELD 15

We now perform the gaussian functional integral of the complex fluctuation field η(k)
considering that the action S[η̄(k), η(k)] can be rewritten in the matrix form

S[η̄(k), η(k)] = S0 +
~
2

∑
~k ωn

(
η̄(k) η(−k)

)
M(k)

(
η(k)
η̄(−k)

)
(1.54)

where the 2× 2 matrix M(k) is given by

M = β

(
M11 M12

M21 M22

)
(1.55)

with

M11 =− i~ωn +
~2k2

2m
− µ+ g0ψ

2
0 +

ψ2
0

2
(V (~k) + V (−~k))

M22 = + i~ωn +
~2k2

2m
− µ+ g0ψ

2
0 +

ψ2
0

2
(V (~k) + V (−~k))

M12 = M21 = ψ2
0 V (~k)

(1.56)

One should also remember that, because of the field parametrization (1.43) the measure
of the functional integral must change. Considering that the functional integral can be
thought as the limit for M → ∞ time steps of the argument of the partition function
1.27, we may extend the usual change of real variables in this ”continuum measure” case.
Doing so, the measure of the integral becomes∫

D[ψ̄, ψ] =

∫ ∏
(~r,τ)

d(ψ̄(~r, τ), ψ(~r, τ))

2πi
=

∫ ∏
(~r,τ)

dη̄(~r, τ) dη(~r, τ)

2πi
=

=

∫ ∏
~k ωn
kz>0

dη̄(~k, ωn) dη(~k, ωn) dη̄(−~k,−ωn) dη(−~k,−ωn)

(2πiLD)2

(1.57)

where the LD factor at the denominator in the last term has been introduced for di-
mensional reasons (and because of the Fourier series convention). Moreover, we must
consider that η(~k, ωn) and η(−~k,−ωn) are not independent integration variables: to pre-
vent overcounting the fields we imposed the restriction kz > 0 in the functional integral
measure.

Substituting the measure (1.57) and the action (1.53) in the equation (1.34) we see that
the grand canonical partition function Z can be expressed as the product

Z = Z0 · Zg (1.58)

where

Z0 = e−S0/~ (1.59)
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is the partition function of the homogeneous system with action (1.52) and Zg is the
gaussian grand canonical partition function which can be easily calculated performing a
gaussian functional integration [38], namely

Zg =

∫ ∏
~k ωn
kz>0

dη̄(k) dη(k) dη̄(−k) dη(−k)

(2πiLD)2
exp

−∑
~k ωn
kz>0

(
η̄(k) η(−k)

)
M(k)

(
η(k)
η̄(−k)

) =

=
∏
~k ωn
kz>0

1

L2D
[det M(k)]−1

(1.60)

The gaussian approximation allowed an explicit calculation of the partition function Z,
which is expressed in Eq. (1.58) as the product of Z0 and Zg. It follows that the grand
potential, given by Ω = −β−1 ln(Z), is expressed as the sum of two main contributions

Ω = Ω0 + Ωg (1.61)

where

Ω0 = LD
(
− µψ2

0 +
1

2
g0ψ

4
0

)
(1.62)

is the zero-temperature grand potential of the uniform system. Regarding the gaussian
grand potential Ωg, we calculate it considering that the factor L2D at the denominator
of the grand canonical partition function Zg can be neglected, since it shifts the grand
potential of a µ independent quantity. We get

Ωg = − 1

β
ln(Zg) = − 1

β

∑
~k ωn
kz>0

ln[det M(k)]−1 (1.63)

The determinant of the gaussian matrix M(k) can be easily calculated, obtaining the
gaussian grand potential Ωg as

Ωg =
1

2β

∑
~k ωn

ln[β2(~2ω2
n + E2

~k
)] (1.64)

where we have defined the excitation spectrum of the elementary excitations of the
bosonic system as

E~k =

√(
~2k2

2m
− µ+ g0ψ2

0 +
ψ2

0

2
(V (~k) + V (−~k))

)2

−
(
ψ2

0V (~k)
)2

(1.65)

To explicitly calculate Ωg we perform the summation over the Matsubara frequencies
ωn. For simplicity, we refer the reader to the Appendix A for the detailed calculation.
We get the gaussian grand potential Ωg as the sum of two main terms

Ωg = Ω(0)
g + Ω(T )

g (1.66)
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where

Ω(0)
g =

1

2

∑
~k

E~k (1.67)

is the zero-temperature gaussian grand potential, written as the sum of noninteracting
bosonic excitations with spectrum E~k, while

Ω(T )
g =

1

β

∑
~k

ln
(

1− e−βE~k
)

(1.68)

is the thermal gaussian contribution to the grand potential.

Considering the various contributions of Eqs. (1.62), (1.67) and (1.68), the grand po-
tential Ω of the bosonic cold atoms system reads

Ω = LD
(
− µψ2

0 +
1

2
g0ψ

4
0

)
+

1

2

∑
~k

E~k +
1

β

∑
~k

ln
(

1− e−βE~k
)

(1.69)

One can also consider the thermodynamic limit of the system, in which the sum over the
wavevectors ~k can be substituted with a continuous D-dimensional integral, following
the prescription

1

LD

∑
~k

=

∫
dDk

(2π)D
(1.70)

In the thermodynamic limit, we express the grand potential per unit of volume Ω/LD

as

Ω

LD
=
(
− µψ2

0 +
1

2
g0ψ

4
0

)
+

1

2

∫
dDk

(2π)D
E~k +

1

β

∫
dDk

(2π)D
ln
(

1− e−βE~k
)

(1.71)

Finally, we add that the D-spatial dimensions integrals over the wavevector ~k are con-
sistently easier to calculate in the case in which the integrand function depends only
on the modulus of the wavevector |~k|. In fact, one can employ D-dimensional spherical
coordinates (also denoted as D-dimensional polar coordinates) to express the integral of
a generic |~k|-dependent integrand function F (|~k|) as∫

dDk

(2π)D
F (|~k|) =

SD
(2π)D

∫ +∞

0
dk kD−1 F (|~k|) (1.72)

where SD = 2πD/2

Γ[D/2] is the surface element of the D-dimensional sphere, namely the solid
angle in D dimensions. We anticipate that, in the thesis, we will need to explicitly
calculate only integrals in which this property holds.

In the next chapter, we will rely on the framework outlined here to derive explicit
equations for the system thermodynamics and to characterize its fundamental static
and dynamic properties, among which we will concentrate on the condensate fraction
and the superfluid density. Before of this, we introduce the procedure and the basic
ideas of dimensional regularization, which will be extensively used in the next chapters.



18 CHAPTER 1. FUNCTIONAL INTEGRATION OF THE BOSONIC FIELD

1.4 Regularization of divergent integrals

Since the early years of quantum mechanics, the regularization of divergent integrals
has been a challenging task, which produced a multitude of different techniques. In
this thesis we will need to treat ultraviolet-diverging integrals, which means that they
diverge in the high wavevector part of the spectrum. The idea behind the elimination of
these degrees of freedom is that high wavevector processes are associated to small spatial
scales, namely they are high energy processes. Since we do not pretend that our theory
is able to correctly describe these processes and considering that from an experimental
point of view we do not observe any divergence, we decide to cut-off this part of the
spectrum.

In our framework, an effective way to regularize the diverging integrals is constituted
by dimensional regularization, which has been developed by ’t Hooft and Veltman [48].
The basic result on which this technique is based is the Veltman conjecture [33]∫ +∞

0
dk kD−1(k2)n−1 = 0 n = 0, 1, 2, ... (1.73)

Moreover, when the Veltmann conjecture is not sufficient or cannot be applied, one
can achieve the regularization of the divergences employing the Euler gamma and beta
functions, defined as

Γ(z) =

∫ +∞

0
dt tz−1 e−t, Re(z) > 0 (1.74)

B(x, y) =

∫ +∞

0
dt

tx−1

(1 + t)x+y
, Re(x),Re(y) > 0 (1.75)

The main fundamental property of the gamma function is that

Γ[z + 1] = z Γ[z] (1.76)

which can be demonstrated with integration by parts of the gamma definition and con-
stitutes the reason why this function is usually described as an extension of the factorial
operation. Using this property, one can extend the domain of the gamma function by
analytic continuation to values of z with Re(z) < 0. The same can be done for the beta
function, relying on the property

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
, Re[x],Re[y] > 0 (1.77)

which can be used to extend the definition of the beta function to negative values of its
arguments. The basic idea of the dimensional regularization with the beta function is
to rewrite the diverging integral in the form of Eq. (1.75) and use the property (1.77) -
even outside the correct domain of application given by Re[x],Re[y] > 0 - to express the
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initial integral in terms of a product of convergent gamma function. It is also useful to
define the logarithmic derivative of the gamma function, usually denoted as the digamma
function, which is

Ψ(z) =
Γ ′(z)

Γ(z)
(1.78)

Essentially, the values of Euler gamma, digamma and beta functions can be obtained
applying the relations (1.76), (1.77), with additional details that are given by [24]. Since
they allow to obtain all the other main values and because they will prove useful in the
next chapters, we only report the values of

Γ(1/2) =
√
π Ψ(1) = −γ (1.79)

where γ ≈ 0.55722 is the Euler-Mascheroni constant.

Despite the dimensional regularization procedure described above can be successfully
used to regularize many ultraviolet diverging integrals, the gamma function evaluated
for negative integer values, for which it is still infinite, may appear in the calculations.
The usual procedure to treat this divergence consists in extending the dimension of the
system to the complex value D = D − ε and, after performing the integration, taking
the limit ε→ 0. For this approach, a fundamental result is constituted by [24]

Γ(−n+ ε) =
(−1)n

n!

[
1

ε
+ Ψ(n+ 1) +

ε

2

(
π2

3
+ Ψ(n+ 1)2 −Ψ′(n+ 1)

)
+ o(ε2)

]
(1.80)

Moreover, using the dimension D = D − ε, all the D-dependent physical quantities will
acquire a dependence on ε: in the ε → 0 limit one can express the Taylor series of a
generic coefficient xε as

xε = exp(ε ln(x)) ∼ε→0 1 + ε ln(x) + o(ε2) (1.81)

The extension to the complex dimension D usually allows to perform the analytic inte-
gration with the beta function (1.75). However, the divergence of the gamma function
for negative integer arguments shows up again when one takes the limit ε → 0, being
enclosed in the o(ε−1) term. The idea is to expand, using the Eqs. (1.80) and (1.81),
all the ε dependent functions in terms of small ε and, after multiplication of all factors,
explicitly delete the diverging o(ε−1) terms.

This procedure is based on the philosophy [49] that regularization consists in

”Extracting Finite Information from Infinities”

which is actually what one does by considering only the o(ε0) terms and deleting the
divergent ones.
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Chapter 2

Statical and dynamical properties
of a bosonic system

In the second chapter we apply and extend the fundamental results of the previous one.
In the first section we derive general equations for the thermodynamics of a Bose gas,
while in the second we express its density n as a function of the condensate density
n0 and the temperature T . In the last sections we deal with dynamical properties of a
Bose-Einstein condensate, namely we work within the framework of the two-fluid model
of a superfluid, to derive the fluid normal density nn first in the Lev Landau historical
approach, then following and extending a derivation by Adriaan Schakel [45].

2.1 Thermodynamic properties

In the previous chapter we obtained the grand potential Ω as a function of µ, ψ0, and
T . In the broken-symmetry condensate phase, the value of the order parameter ψ0 is
different from zero and constitutes the uniform configuration assumed by the system.

To derive the thermodynamical properties of the system we must fix the value of the order
parameter ψ0, being able to express it as a function of the chemical potential µ and the
temperature T . The most common way to determine the uniform field configuration ψ0

consists in using an energy variational principle. We impose the saddle point condition,
namely we impose that ψ0 minimizes the uniform grand potential(

∂Ω0(µ, ψ0)

∂ψ0

)
µ,T,LD

= 0 (2.1)

which leads to the saddle point condition

ψ0 =

√
µ

g0
(2.2)

21
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Substituting this value of ψ0 in the excitation spectrum (1.65), it becomes

E~k,sp =

√(
~2k2

2m
+

µ

2g0
(V (~k) + V (−~k))

)2

−
(
µ

g0
V (~k)

)2

(2.3)

The determination of the mean field value of ψ0 in Eq. (2.2) allows us to explicitly
calculate the grand potential of the order parameter per unit of volume Ω0/L

D, which,
according to Eq. (1.62), reads

Ω0

LD
= − µ2

2g0
(2.4)

which does not depend on the specific interaction V (~k) between bosons, but only on the
contact interaction strength g0. On the contrary, the gaussian contribution to the grand
potential per unit of volume Ωg/L

D depends on the excitation spectrum (2.3). In the
thermodynamic limit it is given by Eqs. (1.67) and (1.68)

Ωg

LD
=

1

2

∫
dDk

(2π)D
E~k,sp +

1

β

∫
dDk

(2π)D
ln
(

1− e−βE~k,sp
)

(2.5)

therefore will give different results depending on the choice of the interaction V (~k): in
the next chapter we shall implement Eq. (2.5) in three and two spatial dimensions,
considering a zero-range interaction or a finite-range effective interaction. Since the first
contribution to the Eq. (2.5) is ultraviolet divergent, we will explicitly regularize it
employing the dimensional regularization techniques described in section (1.4).

The knowledge of the grand potential Ω allows to calculate the main thermodynamical
functions of the system. In particular, the pressure can easily be obtained as the opposite
of the grand potential per unit of volume Ω/LD, according to the relation

P = − Ω

LD
(2.6)

We also remind the definition of the entropy S, which, for a system at the thermody-
namical equilibrium, reads

S = −
(
∂Ω

∂T

)
µ,LD

(2.7)

In particular, we now discuss the number density n of the system, which is given by the
thermodynamical relation

n = − 1

LD

(
∂Ω

∂µ

)
T,LD

(2.8)

Substituting the grand potential contributions given by Eqs. (2.4) and (2.5) we find

n =
µ

g0
− 1

2

∫
dDk

(2π)D

∂E~k,sp
∂µ

− 1

β

∫
dDk

(2π)D

∂E~k,sp
∂µ

1

e
βE~k,sp − 1

(2.9)
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Notice that the first term does not explicitly depend on the form of the interaction V (~k)
while, as for the grand potential, the gaussian corrections given by the second and the
third term of Eq. (2.9), depend on the excitation spectrum E~k,sp. To perform an explicit
calculation, depending on the spatial dimension D and since a regularization procedure
of the integrals is needed, it is either convenient to calculate the grand potential (2.5)
and then derive it with respect to µ to get the number density, or to use directly the
expression (2.9).

As an important result of this thesis, we will derive an equation for the number density
n expressed as a function of the condensate density n0 and the temperature T . However,
we will not employ the number density of Eq. (2.8), in which we stress that the derivative
of the grand potential Ω with respect to the chemical potential µ is taken after having
substituted the saddle point condition (2.2). We remind this detail because in the next
section we will be following another procedure.

In a system with a fixed number density n, it may be useful to determine the chemical
potential µ as a function of the number density n and the temperature T

µ = µ(n, T ) (2.10)

From a mathematical point of view this operation is denoted as the Legendre transform
of the grand potential Ω. Employing a computational approach, one can numerically
calculate the chemical potential µ from the system number density of Eq. (2.9), since it
constitutes an implicit expression in the form (2.10).

In the next section we will introduce the basic concepts of Bose-Einstein condensation.
We will obtain an equation for the system density n expressed as a function of the
condensate density n0 and the temperature T . This equation will be employed, in the
next chapter, to explicitly calculate the condensate fraction n0/n for three- and two-
dimensional bosons interacting with a zero-range and a finite-range interaction.
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2.2 Quantum depletion and thermal condensate fraction

Given a system of bosonic non-interacting atoms at the thermodynamic equilibrium with
temperature T , we define the thermal de Broglie wavelength as

Λ =
h√

2πmkBT
(2.11)

The thermal wavelength Λ can be thought as the cube root of the quantum volume
associated to an atom, therefore represents the length scale at which the particles overlap
and their intrinsic quantum nature must be taken into account. For this reason, Λ is
usually compared with the mean interparticle spacing, which for a system with number
density n, reads

d = n1/3 (2.12)

Notice that Λ increases by decreasing the temperature: while classical physics can be suc-
cessfully used to describe many properties of dilute systems of weakly-interacting gases
at high temperature, a quantum mechanical framework is needed for low-temperature
systems. At low temperatures one usually expects, due to the attractive forces between
the atoms, to find the system in a crystalline solid phase in which the translational
symmetry is broken and there is long-range-order. However, in a very dilute quantum
system in which the short-range cohesive forces are not sufficiently strong, another kind
of order appears, denoted as off-diagonal long-range-order [40]. When the De Broglie
thermal wavelength Λ of the bosonic atoms is much larger than the mean interparticle
spacing d, the superposition between atoms results in a macroscopic occupation of the
zero-momentum single particle state. This means that, in the thermodynamic limit,
a finite fraction of the particles occupy the lowest single particle energy state, namely
the system forms a Bose-Einstein condensate. Notice that the occupation of the zero-
momentum state implies that the atoms in the condensate are completely delocalized
throughout the whole system.

We denote the number density of the atoms in the condensate with n0 and the fraction
of particles in the condensate with n0/n. The condensate fraction n0/n of a system
depends on several factors: on the presence/absence of interaction between bosons, on
the specific form of the interaction, on the temperature and on the spatial dimension D.
In this section we will derive general equations which take into account these conditions.
In particular, one of the goals of this thesis is to calculate the condensate fraction n0/n
for interacting systems of bosonic cold atoms at a finite temperature T .

As an introduction to the general results, we calculate the condensate fraction n0/n of
a non-interacting three-dimensional Bose gas, which is one of the most famous results
in the field of Bose-Einstein condensation. To reproduce it, we start from the grand
potential per unit of volume Ω/LD of Eq. (1.61) in which we put D = 3 and we take
the interaction V (~k) = 0, obtaining

Ω

L3
= −µψ2

0 +
1

2

∫
d3k

(2π)3
χk +

1

β

∫
d3k

(2π)3
ln
(

1− e−βχk
)

(2.13)
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where we have defined the shifted free-particle spectrum χk as

χk =
~2k2

2m
− µ (2.14)

Notice that the second term of Eq. (2.13) can be regularized thank to the Veltman
conjecture (1.73) and does not contribute to the grand potential. Similarly to what has
been done in the previous section, the value of the order parameter ψ0 can be fixed by
imposing the saddle point condition(

∂Ω0(µ, ψ0)

∂ψ0

)
µ,T,LD

= 0 (2.15)

from which we get the saddle point condition for a non-interacting system

ψ0 =

{
0 if µ < 0

any value, if µ = 0
(2.16)

The saddle point condition shows that, in presence of spontaneous symmetry breaking
of the U(1) global symmetry, the order parameter ψ0 can assume a non-zero mean field
value if the chemical potential is µ = 0. Therefore we assume that, in a non-interacting
system, there can be a finite condensate fraction in the thermodynamic limit if µ = 0
and we identify the condensate density with n0 = ψ2

0, i.e. as the square of the order
parameter. Knowing the grand potential per unit of volume (2.13), we calculate the
number density as

n = − 1

L3

∂Ω

∂µ
= n0 +

1

β

∫
d3k

(2π)3

1

eβ
~2k2

2m − 1
(2.17)

where we calculate the derivative of the grand potential per unit of volume with respect
to the chemical potential µ and, after that, we substitute the chemical potential value
in the condensed phase µ = 0. Notice that this procedure is actually different from the
calculation of the number density described in the previous section after Eq. (2.9) and
consider that the substitution of the saddle point condition (2.16) in the grand potential
(2.13) before taking the derivative would not have given the same result of Eq. (2.17).

The critical temperature Tc for a three-dimensional system of noninteracting bosons can
be derived by putting n0 = 0 in the Eq. (2.17) and performing the integral, obtaining

Tc =
2π~2

mkB

(
n

ζ(3/2)

)2/3

(2.18)

where ζ(3/2) ≈ 2.612 is the Riemann zeta function. The integration of the number
density equation (2.17) for a generic temperature T allows us to obtain the dependence
of condensate fraction n0/n on the temperature

n0

n
= 1−

(
T

Tc

)3/2

(2.19)
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It should be noted that the condensate fraction of a three-dimensional system of nonin-
teracting bosons goes from n0/n = 1 at T = 0, to n0/n = 0 at the critical temperature
Tc, as displayed in Fig. (2.1).

Figure 2.1: Condensate fraction n0/n for noninteracting bosons in D = 3, reported as a function
of the scaled temperature T/Tc. The critical temperature Tc is reported in Eq. (2.18)

The picture gets more complicated if, in the study of three-dimensional bosons, one
includes the interaction. In this case the condensate fraction is lower than 1 even at
T = 0. This phenomenon is usually denoted as quantum depletion and is linked to
the fact that the interaction between particles depletes the condensate. Depending
on the interaction strength, the zero-temperature quantum depletion may be more or
less pronounced. While for dilute alkali cold atoms the condensate fraction n0/n is
approximately 1, He-II is a strongly-interacting bosonic system and less than 10% of the
atoms are condensated at T = 0 [36].

Bose-Einstein condensation can also be studied in low-dimensional systems. In this case,
one must take into account that the Mermin-Wagner theorem demonstrates that [35], if
the lagrangian is invariant under a continuous symmetry group (U(1) in our case), there
cannot be long-range-order at finite temperature in two- and one- dimensional systems.
In the thesis we will discuss only two-dimensional systems, in which the Mermin-Wagner
theorem implies that there can be Bose-Einstein condensation only at T = 0, while
there cannot be long-range-order (then the condensate phase) at T > 0, since at finite
temperature the U(1) symmetry cannot be broken. In two-dimensional systems, one
usually refers to the quasi-condensate, which can be regarded as a local condensate or,
equivalently, the condensation in a system which is not considered is the thermodynamic
limit, in which the condensate fraction must be zero.

Let us derive a zero-temperature formula for the number density n of a system in D
spatial dimensions. We consider bosons interacting with a generic potential V (~k): the
quantum fluctuations of the system, responsible of the quantum depletion, are taken
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into account as the noninteracting quasi-particle excitations with spectrum E~k of the
zero-temperature gaussian grand potential (1.67). This density equation is an implicit
expression which will be used to determine the condensate fraction n0/n of the system.
Denoting the zero-temperature grand potential with Ω(µ, ψ0, T = 0), constituted only
by the contributions of Eqs. (1.62) and (1.67), we calculate the system density n at
T = 0 as [45]

n (n0, T = 0) = − 1

LD
∂Ω(µ, ψ0, T = 0)

∂µ

∣∣∣∣ µ = g0ψ
2
0

ψ2
0 = n0

(2.20)

where we take the derivative of the grand potential with respect to the chemical potential
µ first and then we substitute the mean field value of the chemical potential µ = g0ψ

2
0

(see the saddle point condition of Eq. (2.2)), with the identification for the condensate
density n0 = ψ2

0. We justify this procedure considering that the number density n
expressed in terms of the condensate density n0 has been calculated in the same way in
the Eq. (2.17) of the three-dimensional noninteracting case.

Inserting the zero-temperature grand potential in Eq. (2.20), one obtains the density as
a sum of two contributions

n (n0, T = 0) = n0 + f (0)
g (n0) (2.21)

where we have defined the gaussian contribution to the zero-temperature density f
(0)
g (n0)

as

f (0)
g (n0) = − 1

2LD

∑
~k

∂E~k
∂µ

(µ, ψ0)

∣∣∣∣ µ = g0ψ
2
0

ψ2
0 = n0

(2.22)

To calculate it, we notice that the derivative with respect to µ of the general excitation
spectrum E~k of Eq. (1.65) is given by

∂E~k
∂µ

(µ, ψ0)

∣∣∣∣ µ = g0ψ
2
0

ψ2
0 = n0

= −
~2k2

2m + n0
2 (V (~k) + V (−~k))√(~2k2

2m + n0
2 (V (~k) + V (−~k))

)2 − (n0V (~k)
)2 (2.23)

Substituting this result in the zero- temperature gaussian contribution to the density

(2.22), we can write f
(0)
g (n0) in the thermodynamic limit as

f (0)
g (n0) =

1

2

∫
dDk

(2π)D

~2k2

2m + n0
2 (V (~k) + V (−~k))√(~2k2

2m + n0
2 (V (~k) + V (−~k))

)2 − (n0V (~k)
)2 (2.24)

which depends on the interaction V (~k) and will be calculated explicitly choosing a zero
and a finite-range interaction in the next chapter. The relation (2.21) can then be used
to obtain a relation between n and n0 at zero-temperature, and in principle, also the
condensate fraction n0/n and the quantum depletion n−n0

n .
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Consider that, in the equations above, we express the zero-temperature density n (n0, T = 0)
as a function of the condensate density n0. At finite temperature, as we have previously
stated, the spatial dimension D of the system plays a crucial role in the phenomenon of
Bose-Einstein condensation. In three-dimensional systems, the condensate fraction n0/n

is also reduced by the effect of thermal fluctuations, encoded in the term Ω
(T )
g . Quite

differently, for low-dimensional systems it is expected that the thermal fluctuations di-
verge, destroying the zero-temperature condensate. Keeping this distinction in mind,
we continue to use a generic spatial dimension D and we express the number density n
extending the relation (2.21) at finite temperature as

n (n0, T ) = n0 + f (0)
g (n0) + f (T )

g (n0) (2.25)

where f
(0)
g (n0) is given as before by Eq. (2.24), and where we have defined the finite-

temperature density contribution f
(T )
g (n0) as

f (T )
g (n0) = − 1

LD
∂Ω

(T )
g (µ, ψ0)

∂µ

∣∣∣∣ µ = g0ψ
2
0

ψ2
0 = n0

= −
∫

dDk

(2π)D
1

eβE~k − 1

∂E~k
∂µ

(µ, ψ0)

∣∣∣∣ µ = g0ψ
2
0

ψ2
0 = n0

(2.26)
If we substitute in the third member the explicit form of the excitation spectrum deriva-
tive (2.23), we get

f (T )
g (n0) =

∫
dDk

(2π)D
1

eβE~k − 1

~2k2

2m + n0
2 (V (~k) + V (−~k))√( ~2k2

2m
+ n0

2
(V (~k) + V (−~k))

)2 −
(
n0V (~k)

)2 (2.27)

We maintain the generic dimension D for regularization necessities, even though we will

show in the next chapter that f
(T )
g (n0) diverges for low-dimensional systems, due to the

Mermin-Wagner theorem.

Finally, as a consistence test of this procedure, we expect to obtain the critical conden-
sation temperature Tc of Eq. (2.18) if we choose D = 3, put the condensate density n0

to zero and we choose V (~k) = 0 in the number density (2.25). This is actually correct,
since the density equation (2.25) becomes

n (n0 = 0, Tc) =
1

2

∫
d3k

(2π)3
+

∫
d3k

(2π)3

1

e
1

kBTc
~2k2

2m − 1

(2.28)

We simply delete the first integral using the Veltman conjecture (1.73), while the second
integral can be easily computed and used to obtain the number density at the critical
temperature n (n0 = 0, Tc). It is straightforward to see that the inversion of this result
produces exactly the critical temperature Tc of the Eq. (2.18).

In the next section we retrace the historical Lev Landau derivation of the normal density
nn of a superfluid, obtained in the context of the two-fluid model.
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2.3 Landau derivation of the superfluid density

In 1941 Lev Landau proposed [28] a two-fluid model to explain the superfluid behavior
of 4He. We now reproduce his derivation, as presented by himself in the Course of
Theoretical Physics [29].

Let us consider a bosonic fluid whose excitation spectrum is given by Ep.
1 If the low

energy part excitation spectrum is phononic (or gapped), thus linear (or constant) in
low momenta ~p, the fluid shows a property called superfluidity. A superfluid can flow
through capillaries without showing a dissipation of its kinetic energy, namely as a fluid
with zero viscosity.

To explain this phenomenon let us now consider a generic fluid flowing in a capillary
with a velocity ~v. We identify with S this frame of reference, the one in which the
capillary walls are stationary and the fluid is seen to move with velocity ~v. Conversely
we denote with S ′ the frame of reference in which the capillary moves with velocity −~v
and the fluid is still.

Since we are studying a low energy system we suppose that its physical description is
invariant under the set of Galilean transformations

~r = ~r ′ + ~vt

~P = ~P ′ +M~v

E = E ′ +
1

2
Mv2 + ~P ′ · ~v

(2.29)

where ~r denotes the macroscopic position of a fluid element with mass M , momentum
~P and energy E in the frame of reference S , while the ′ mark is related to the same
quantities in frame of reference S ′.

One can then write the energy and the momentum of the fluid in S ′ and calculate the
same quantities in S employing the transformations (2.29). For a fluid initially at rest
in S ′ we have

S ′ : E ′ = ε0 ~P ′ = 0

S : E = ε0 +
1

2
Mv2 ~P = M~v

(2.30)

where ε0 is the macroscopic energy of the fluid in S ′, where it is at rest. If the system
is in the ground state, then simply ε0 = 0.

Let us now analyze how the energy changes during the motion of the fluid.

1In this section ~p represents the momentum of the excitation with spectrum Ep, while ~k that appears
in the excitation spectrum (1.65) is a wavevector. Since we are not choosing ~ = 1 they are not the same

quantity and the relations obtained can be written in terms of the wavevector ~k by putting ~p = ~~k. Here
we choose this convention for uniformity with the work of Landau.
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A viscous fluid in S will perceive the friction against the capillary wall and the friction
within the fluid itself. As a result of this process, the fluid will gradually decrease its
macroscopic kinetic energy. Conversely, in S ′, the fluid will acquire kinetic energy due
to the friction between the moving capillary wall and the fluid itself. In this case, the
fluid is not put in motion as a whole, but it is gradually excitated by the walls: let us
suppose that, because of the friction, an elementary excitation with momentum −~p and
spectrum Ep appears. Then, we rewrite the previous equations as

S ′ : E ′ = ε0 + Ep ~P ′ = −~p

S : E = ε0 + Ep +
1

2
Mv2 − ~p · ~v ~P = −~p+M~v

(2.31)

We see that, due to the friction, the energy of the fluid in system S changes of ∆E,
where

∆E = Ep − ~p · ~v (2.32)

For a normal viscous fluid this quantity must be negative, which allows us to identify
the minimum velocity it must have in order to dissipate its energy

vmin = lim
p→0

Ep
p

(2.33)

If vmin = 0 the fluid is ordinary and it flows dissipating its energy, but if vmin is finite
and positive the fluid behaves like a superfluid for velocities v < vmin. Therefore, a
fluid whose excitation spectrum is either phononic or gapped possess a finite minimum
velocity vmin = limp→0

Ep
p 6= 0, under which it shows a superfluid behavior. This result

is usually known as the Landau criterion for superfluidity.

In the previous equations we have considered a superfluid in the ground state at T = 0.
Let us now consider a fluid system at a low, but non-zero temperature. In this case the
fluid will not be in the ground state, but in an excited state due to the presence of thermal
excitations. As we have seen in the previous argument, the presence of excitations is
responsible for the viscosity of the fluid, i.e. for the dissipation of its macroscopic kinetic
energy. Therefore, we may think the gas of non-interacting quasi-particles as the normal,
viscous part of the fluid, and we will suppose that it moves with velocity ~v relative to
the remaining superfluid liquid.

We are interested in calculating the momentum density of the normal part as a thermal
mean over all excitations: to perform the calculation we will need the know the distribu-
tion function of the quasi-particles. The main problem is that the distribution function
of the gas must be obtained in a frame of reference at rest with the gas. For this scope,
we now identify the frames of reference S where the excitations gas is at rest and the
fluid moves with velocity −~v and S ′, where the excitations move with velocity ~v and
the fluid is at rest.

The previous argument can be used again, obtaining exactly the Eqs. (2.30) where ε0
can be now interpreted as the energy of the system in S ′. After the appearance of
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an excitation in S ′ one obtains again the equations (2.31), which allow us to identify
the energy of a single excitation in frame of reference S ′ in which the gas is at rest as
Ep− ~p ·~v. This means that the bosonic non-interacting gas of quasi-particles will follow
the ”shifted” Bose-Einstein distribution function fB(Ep − ~p · ~v), with

fB(Ep − ~p · ~v) =
1

eβ(Ep−~p·~v) − 1
(2.34)

Knowing the particle distribution in the frame of reference S ′, we calculate the total
momentum per unit of volume ~Pn of the quasi-particle excitations gas as

~Pn =
1

LD

∑
~p

~p fB(Ep − ~p · ~v) (2.35)

which can be easily written in the thermodynamic limit as

~Pn =

∫
dDp

(2π~)D
~p fB(Ep − ~p · ~v) (2.36)

According to the Landau criterion, there can be superfluid motion only if the modulus
of the velocity is v < vmin. Therefore we consider a fluid moving with a small velocity
~v, such as we can expand the distribution function (2.34) around ~v = 0, obtaining

~Pn = −
∫

dDp

(2π~)D
~p(~p · ~v)

∂fB(Ep)

∂Ep
(2.37)

where we report only the first order of the expansion of fB, since the zero-order term
is zero due to the symmetry of the integration domain. Finally, we may simplify
Eq. (2.37) by taking the average over the directions of ~p, according to the property∫
dDp pi pjv

jF (|~p|) = 1
Dδij v

j
∫
dDp p2F (|~p|), where F (|~p|) is a generic function which

depends only on the modulus of the momentum ~p. The momentum density ~Pn reads

~Pn =
β

D
~v

∫
dDp

(2π~)D
p2 eβEp

(eβEp − 1)2
(2.38)

At last, we calculate the normal number density nn considering that the momentum
density ~Pn is the momentum per unit of volume transported by the normal part of the
fluid: ~Pn = nnm~v. We can identify2

nn =
β

Dm

∫
dDk

(2π)D
~2k2 eβEk

(eβEk − 1)2
(2.39)

which is the normal density of the fluid, as originally obtained by Landau. We are in
this way implementing a two-fluid model: we are studying the superfluid as a mixture

2For uniformity of notation with the rest of the thesis, we restart using the wavevector ~k, i.e. we put
~p = ~~k
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of the normal component nn and a superfluid component ns, which constitute together
the fluid with density n, such as

n = ns + nn (2.40)

Despite the two-fluid model is very useful to understand the physical behavior of a fluid
at low temperature, it should be noted that the two components are not physically
separable. Instead, we should view the fluid as simultaneously capable of two different
motions: the superfluid non-viscous flow interesting a fraction ns/n of the fluid and
the normal viscous flow interesting a fraction nn/n of the fluid. Depending on the
temperature, the fluid shows a different behavior since a different proportion of the two
motions appear: the fluid density goes from n = ns at T = 0 to n = nn at the transition
temperature.

In the next section we will follow a microscopic approach to derive an expression of the
normal density nn in agreement with the familiar Landau result of Eq. (2.39). Moreover,
we will use the finite-temperature relationship between the total number density n of
the system and the condensate density n0 of Eq. (2.25) to derive an explicit equation
connecting in three dimensions the superfluid density ns with the condensate density
n0 and the temperature T , which may be regarded as an explicit formulation of the
Josephson relation [21].
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2.4 Microscopic derivation of the superfluid density

We introduce here a derivation to calculate the normal fluid density nn from a micro-
scopic approach, obtaining an equivalent result to the Landau expression (2.39). The
normal density, expressed as a function of the condensate density n0 and the tempera-
ture T , will be used, together with the density equation (2.25), to derive the superfluid
density ns.

We start from the non-relativistic lagrangian (1.36) of the bosonic system, rewritten in
the equivalent form

L(ψ̄, ψ) = ψ̄(~r, τ)

(
~∂τ −

~2∇2

2m
− µ

)
ψ(~r, τ) +

1

2

∫
dDr′ |ψ(~r, τ)|2 V (~r, ~r ′) |ψ(~r ′, τ)|2

(2.41)

We consider a fluid moving with velocity ~v with respect to the laboratory frame of
reference. Like in the study of fluid mechanics [27], the description of a fluid in motion
can be made substituting the partial time derivative with the Lagrangian fluid velocity,
following the motion of the fluid

∂

∂t
=

∂

∂t′
+ ~v · ~∇ (2.42)

However, remembering that we are working with imaginary time, we need to perform
the Wick rotation τ = it, obtaining the relation

∂

∂τ
=

∂

∂τ ′
− i~v · ~∇ (2.43)

Moreover, we treat the bosonic fluid in the two-fluid model framework, thus as composed
by a normal part and a superfluid part. Since the superfluid part of the fluid flows
without internal friction and without exchanging momentum with the normal part of
the fluid, the velocity ~vs may be, in principle, different from ~v. Therefore, we include
a superfluid current in the lagrangian description rewriting the bosonic field with the
phase twist [16,20]

ψ′(~r, τ) = ei
m~vs·~r

~ ψ(~r, τ) (2.44)

Considering the Lagrangian time derivative of Eq. (2.42) and the field transformation
given by Eq. (2.44), we rewrite the lagrangian (2.41) in terms of the new field ψ′(~r, τ)
as

L(ψ̄′, ψ′) = ψ̄′(~r, τ)

(
~∂τ −

~2∇2

2m
− µ+

1

2
m~vs · (~vs − 2~v) + (~v − ~vs) · (−i~~∇)

)
ψ′(~r, τ) +

1

2

∫
dDr′ |ψ′(~r, τ)|2 V (~r, ~r ′) |ψ′(~r ′, τ)|2

(2.45)
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Notice that the interacting part of the new lagrangian does not change at all with
respect to the initial lagrangian (2.41), due to the translational invariance of the spatial
integration (both for the ~r ′ coordinate and for ~r) since in the functional integral approach
the lagrangian is always thought to be inside the action (1.35). In the new lagrangian
appeared the term (~v−~vs)·(−i~~∇), which is obtained as a consequence of the Lagrangian
time derivative and the phase twist. However, among the new terms, the most interesting
is the fourth term of the new lagrangian (2.41), since it produces a shift of the chemical
µ to the effective value µeff given by

µeff = µ− 1

2
m~vs · (~vs − 2~v) (2.46)

It is interesting to see that the existence of a superfluid current with velocity ~vs 6= 0 in
the system is responsible for a shift of the chemical potential. In fact, the phase of the
bosonic field is proportional to the system chemical potential µ [40], therefore, due the
presence of a superfluid current, the phase twist (2.44) appears and changes the chemical
potential to µeff.

From now on we will drop the mark ′ on the fields for easiness of notation, rewriting the
lagrangian (2.45) as

L(ψ̄, ψ) = ψ̄(~r, τ)

(
~∂τ −

~2∇2

2m
− µeff + (~v − ~vs) · (−i~~∇)

)
ψ(~r, τ)+

1

2

∫
dDr′ |ψ(~r, τ)|2 V (~r, ~r ′) |ψ(~r ′, τ)|2 (2.47)

Starting from this lagrangian, all the operations described in the section (1.3) can be
repeated from the broken-symmetry field parametrization (1.43) to the action (1.53).
Since the extension of the previous arguments is straightforward, we refer the reader to
the section (1.3) for the details. In this context we obtain the system action S in the
Fourier space as a function of the complex fluctuation field η(k) around the homogeneous
order parameter ψ0 written in the following form

S[η(k), η(−k)] = S0 +
~
2

∑
~k ωn

(
η̄(k) η(−k)

)
M(k)

(
η(k)
η̄(−k)

)
(2.48)

where we define the 2× 2 matrix M(k) as

M(k) = β

(
M11 M12

M21 M22

)
(2.49)

with

M11 = −i~ωn +
~2k2

2m
− µeff + g0ψ

2
0 +

ψ2
0

2

(
V (~k) + V (−~k)

)
+ ~(~v − ~vs) · ~k

M22 = +i~ωn +
~2k2

2m
− µeff + g0ψ

2
0 +

ψ2
0

2

(
V (~k) + V (−~k)

)
− ~(~v − ~vs) · ~k

M12 = M21 = ψ2
0 V (~k)

(2.50)
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As before, we obtain the grand potential as the sum of two contributions

Ω = Ω0 + Ωg (2.51)

where the order parameter grand potential Ω0 now contains µeff instead of µ as in Eq.
(1.62)

Ω0 = LD
(
− µeff ψ

2
0 +

1

2
g0ψ

4
0

)
(2.52)

and the gaussian grand potential Ωg is given by

Ωg = − 1

β

∑
~k ωn
kz>0

ln[det M(k)]−1 =
1

2β

∑
~k ωn

ln[β2(E2
~k
− (i~ωn − ~(~v − ~vs) · ~k )2)] (2.53)

The excitation spectrum of the system E~k is simply given by the previous excitation
spectrum of Eq. (1.65), in which the chemical potential µ is replaced by µeff, namely

E~k =

√(
~2k2

2m
− µeff + g0ψ2

0 +
ψ2

0

2
(V (~k) + V (−~k))

)2

−
(
ψ2

0 V (~k)
)2

(2.54)

However, differently from the previous chapter, the summation over the Matsubara
frequencies in the gaussian grand potential (2.53) cannot be directly made due to the
presence of the linear term in the wavevector ~k. Let us employ the logarithm properties
to rewrite Ωg in the equivalent form

Ωg =
1

2β

∑
~k ωn

ln[β(E~k − (i~ωn − ~(~v − ~vs) · ~k)]+

1

2β

∑
~k ωn

ln[β(E~k + (i~ωn − ~(~v − ~vs) · ~k)]

(2.55)

In this case, we cannot use the procedure described in the Appendix A, unless we are
not able to write the gaussian grand potential in the form given by Eq. (A.2). Hence,
to perform the Matsubara frequencies summation we need to make some simplifying
assumptions. First of all, we notice that under the hypothesis that the interaction
potential is left unchanged by a reflection of the wavevector

V (~k) = V (−~k) (2.56)

it follows that the also excitation spectrum (2.54) is symmetric under a reflection of the
wavevector E~k = E−~k. We now swap ~k with −~k in the summation over the wavevectors

~k in the second term of Eq. (2.55) and we define the shifted excitation spectrum ξ~k as

ξ~k = E~k + ~(~v − ~vs) · ~k (2.57)
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The logarithm properties, used to factor the gaussian grand potential Ωg, can be used
again to rewrite it in the form

Ωg =
1

2β

∑
~k

+∞∑
n=−∞

ln[β2(~2ω2
n + ξ2

~k
)] (2.58)

We can now follow the procedure described in Appendix A to sum over the Matsubara
frequencies ωn. Finally, we obtain the total grand potential Ω in the familiar form

Ω = Ω0 + Ω(0)
g + Ω(T )

g (2.59)

with Ω0 given by Eq. (2.52), while the zero-temperature grand potential is

Ω(0)
g =

1

2

∑
~k

ξ~k =
1

2

∑
~k

E~k (2.60)

where we should have also added the term
∑

~k
~(~v − ~vs) · ~k, which however is zero for

symmetry reasons and where the excitation spectrum E~k, due to the assumption (2.56)
on the interaction potential, becomes

E~k =

√(
~2k2

2m
− µeff + ψ2

0(g0 + V (~k))

)2

−
(
ψ2

0 V (~k)
)2

(2.61)

The finite-temperature grand potential Ω
(T )
g now reads

Ω(T )
g =

1

β

∑
~k

ln
(

1− e−β(E~k+~(~v−~vs)·~k)
)

(2.62)

Let us remark that in the derivation we have made the crucial assumption (2.56) that the
interaction potential is symmetric under the reflection of the wavevector ~k. Considering
that the interaction V (~r − ~r ′) can be written in terms of the Fourier component V (~k)
as the Fourier transform (1.39), one can show that the hypothesis of invariance under
reflection in the Fourier space implies the same invariance in real space, namely

V (~r − ~r ′) = V (~r ′ − ~r) (2.63)

The knowledge of the grand potential Ω in the form (2.59) constitutes the starting point
to determine the superfluid number density ns of the fluid. According to the two-fluid
model of a superfluid, we expect to obtain ns as

ns = n− nn (2.64)

In section (2.2) we have obtained the finite-temperature number density n (n0, T ) in Eq.
(2.25). Here we calculate also the normal density nn (n0, T ), again as a function of the
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condensate density n0 and the temperature T : this will allow us to obtain an explicit
formulation of the Josephson relation for ns.

We start by considering that, since the chemical potential µ is shifted to the effective
value µeff given by Eq. (2.46) due to the presence of the superfluid current, the saddle
point condition (2.2) now becomes

ψ0 =

√
µeff

g0
(2.65)

Notice that all the contributions calculated in the equation for the finite-temperature
number density n (n0, T ) obtained in section (2.2) continue to hold, provided that µeff =
g0ψ

2
0 = g0n0. We remark this point because the density contributions of Eq. (2.25) will

emerge again in the following equations.

Let us calculate the total momentum density ~P of the fluid as

~P =
1

LD
∂Ω(µeff, ψ0)

∂(−~v)

∣∣∣∣µeff = g0ψ
2
0

ψ2
0 = n0

(2.66)

where, in analogy with what has been done for the system density, we calculate the
derivative of the grand potential Ω with respect to the opposite of the fluid velocity −~v
and after that we substitute the condition µeff = g0ψ

2
0 = g0n0. The total momentum

density ~P is given by
~P = ~P0 + ~P(0)

g + ~P(T )
g (2.67)

where, since the grand potential Ω is constituted by the three contributions of Eq. (2.59),

we define ~P0, ~P
(0)
g and ~P

(T )
g accordingly: let us calculate separately each one of them.

The homogeneous momentum density ~P0 is given by

~P0 = n0m~vs (2.68)

The zero-temperature gaussian contribution ~P
(0)
g is

~P(0)
g = f (0)

g (n0)m~vs (2.69)

where f
(0)
g (n0) is given by Eq. (2.22).

The finite-temperature gaussian contribution ~P
(T )
g to the momentum density needs more

work, since it is more involved. We find

~P(T )
g =

∫
dDk

(2π)D
1

eβ(E~k+~(~v−~vs)·~k) − 1

[
∂E~k
∂µeff

∂µeff

∂(−~v)
− ~~k

]∣∣∣∣µeff = g0ψ
2
0

ψ2
0 = n0

(2.70)
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Assuming that the difference between the velocity ~v of the normal fluid and the velocity
~vs of the superfluid is small, we can expand the exponential at the denominator of the
integral for ~v−~vs ≈ 0. Then, taking into account that the integrals of some of the terms
in the expansion give zero for symmetry reasons, we obtain

~P(T )
g =

∫
dDk

(2π)D
1

eβE~k − 1

∂E~k
∂µeff

∂µeff

∂(−~v)

∣∣∣∣µeff = g0ψ
2
0

ψ2
0 = n0

+

β

∫
dDk

(2π)D
eβE~k

(eβE~k − 1)2
~2((~v − ~vs) · ~k) ~k

∣∣∣∣µeff = g0ψ
2
0

ψ2
0 = n0

(2.71)

In the first term, after the calculation of the derivative of the effective chemical potential

µeff, we recognize the definition of the finite-temperature contribution f
(T )
g (n0) of Eq.

(2.27), while the second term is formally analogous to the momentum density of the
normal fluid (2.37) obtained by Landau. In particular, we find that, using explicit

vectorial components, the finite-temperature gaussian contribution ~P
(T )
g can be written

as
(P(T )

g )
i

= f (T )
g (n0) m (~vs)i + (nn)ijm(~v − ~vs)j (2.72)

where we identify the tensorial normal density (nn)ij as

(nn)ij =
β~2

m

∫
dDk

(2π)D
eβE~k

(eβE~k − 1)2
ki kj

∣∣∣∣µeff = g0ψ
2
0

ψ2
0 = n0

(2.73)

Here the normal density is obtained in general as a tensorial quantity, however, following
the work of Landau, we focus on the description of a system in which the excitation
spectrum E~k depends only on the modulus |~k| of the wavevector. Hence, we can rewrite
the tensorial normal density (2.73) using the isotropy property for a generic integrand
function F (|~k|) of |~k| ∫

dDkF (|~k|) ki kj =
1

D
δij

∫
dDk k2F (|~k|) (2.74)

such as the finite-temperature gaussian contribution ~P
(T )
g of Eq. (2.72) becomes

~P(T )
g = f (T )

g (n0)m~vs + nn (n0, T )m(~v − ~vs) (2.75)

where we have defined the scalar normal density nn (n0, T ) as

nn (n0, T ) =
β

mD

∫
dDk

(2π)D
~2k2 eβEk(n0)

(eβEk(n0) − 1)2
(2.76)

Notice the result of Landau reproduced in our Eq. (2.39) coincides with the normal
density obtained here, in which the excitation spectrum Ek(n0) is now given by the
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spectrum (2.61) where it is substituted the condition ψ2
0 = n0, namely

Ek(n0) =

√
~2k2

2m

(
~2k2

2m
+ 2n0V (k)

)
(2.77)

We now put the Eqs. (2.68), (2.69) and (2.75) together, obtaining the total momentum
density ~P as

~P = [n0 + f (0)
g (n0) + f (T )

g (n0)] m~vs + nn (n0, T )m(~v − ~vs) (2.78)

We recognize inside the square bracket the number density n (n0, T ) as obtained in Eq.
(2.25), so that ~P now becomes

~P = n (n0, T ) m~vs + nn (n0, T )m(~v − ~vs) (2.79)

Finally, we employ the usual superfluid density ns definition of Eq. (2.64), which we
reinterpret as

ns = n (n0, T )− nn (n0, T ) (2.80)

to get the total momentum fluid density ~P of the two-fluid model

~P = nsm~vs + nnm~v (2.81)

In this way we have expressed, following a microscopic approach, the fluid total mo-
mentum density as the momentum carried by the normal fluid with density nn plus the
momentum density of the superfluid with density ns.

The main result of this thesis is given by Eq. (2.80), which highlights a non-trivial
relationship between the superfluid density ns, the condensate density n0 and the tem-
perature T . In particular, we can regard it as an explicit formulation, valid at a gaussian
level, of the Josephson relation which links ns, n0 and T [21].

Let us write explicitly Eq. (2.80) substituting the expressions (2.25) and (2.76) for
n (n0, T ) and nn (n0, T ), obtaining

ns = n0 +

∫
dDk

(2π)D

~2k2

2m + n0V (k)

Ek(n0)

[
1

2
+

1

eβEk(n0) − 1

]
−

β

mD

∫
dDk

(2π)D
~2k2 eβEk(n0)

(eβEk(n0) − 1)2
(2.82)

For the sake of completeness we remind that the number density corresponds to the first
three terms, namely

n (n0, T ) = n0 +

∫
dDk

(2π)D

~2k2

2m + n0V (k)

Ek(n0)

[
1

2
+

1

eβEk(n0) − 1

]
(2.83)
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In the next chapter we will implement Eq. (2.82) in D = 3, explicitly substituting
the interaction potential V (~k) with a zero-range interaction or a finite-range effective
interaction.

Depending on the specific case, it will also be necessary to express the superfluid density
ns as a function of the density n and the temperature T as

ns = n− β

mD

∫
dDk

(2π)D
~2k2 eβEk(n0(n,T ))

(eβEk(n0(n,T )) − 1)2
(2.84)

in which the number density n (n0, T ) of Eq. (2.83) is used to express the condensate
density n0 = n0 (n, T ) as a function of the density n. In particular, we will discuss the
two-dimensional case, in which we will show that the thermal contribution to the density

f
(T )
g is divergent. In that case, the superfluid density ns is obtained as

ns = n− β

mD

∫
dDk

(2π)D
~2k2 eβEk(n0(n,T=0))

(eβEk(n0(n,T=0)) − 1)2
(2.85)

namely expressing n0 = n0 (n, T = 0) from the zero-temperature number density of Eq.
(2.21). We expect this to represent a reliable equation for ns as a function of n and T
in the low-temperature regime.

To test the consistency of the equations obtained in this section, one can substitute
D = 3 and n0 = 0 in the Eq. (2.82). We expect that, if all particles are out of the
condensate, the only non-zero term of the density n (n0, T ) is the thermal contribution

f
(T )
g . Moreover, the system cannot be superfluid, so that f

(T )
g = nn, hence the superfluid

density must be zero ns = 0. This is exactly what happens, since the superfluid density
becomes

ns (n0 = 0, T ) =
1

2

∫
d3k

(2π)3
+

∫
d3k

(2π)3

1

eβ
~2k2

2m − 1
− β

3m

∫
d3k

(2π)3
~2k2 eβ

~2k2

2m

(eβ
~2k2

2m − 1)2

(2.86)
While the first integral can be deleted thank to the Veltman conjecture (1.73), it can be
easily shown that extending the third integral to spherical coordinates and performing an

integration by parts, the last two integrals are the same quantity f
(T )
g (n0) = nn (n0, T ).

As we expected, this implies that a three-dimensional bosonic system, in absence of the
condensate, has also ns = 0.



Chapter 3

Explicit formulation for
D-dimensional interacting bosons

In the previous chapter we have obtained general equations for D-dimensional bosons
in terms of a generic interaction potential V (~k). In the first section we will treat the
zero-range interaction V (~k) = g0, while in the second we will extend the derivation to the
finite-range interaction V (~k) = g0 + g2k

2. In both cases we will derive explicit formulas
for the grand potential, the system density in terms of the condensate density and the
superfluid density for three- and two- dimensional systems.

3.1 Zero-range interaction in D dimensions

Let us consider bosons interacting with the zero-range interaction

V (~r − ~r ′) = g0 δ(~r − ~r ′) (3.1)

where g0 is the interaction strength (1.51). We also refer to this interaction in terms
of contact interaction, since it describe bosons which interact only if are in the same
position.

This zero-range approximation of the real interaction potential is quite reliable in the de-
scription of ultracold and dilute gases made of alkali-metal atoms, where the interatomic
distance d is much larger than the characteristic range of the interatomic potential [32].
The Fourier transform of the contact interaction is given by, according to its definition
(1.40)

V (~k) = g0 (3.2)

Since the general treatment of section (1.3) is valid for a generic interaction V (~k), we
explicitly calculate the general excitation spectrum substituting the Fourier transform

41
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of the interaction (3.2) into Eq. (1.65), so that

Ek =

√(
~2k2

2m
− µ+ 2g0ψ2

0

)2

−
(
g0ψ2

0

)2
(3.3)

Notice that, to derive the number density n (n0, T ) and the normal density nn (n0, T )
in the context of the microscopic model of section (2.4), one needs to substitute in the
excitation spectrum the chemical potential µ with the effective chemical potential µeff

and identify µeff = g0ψ
2
0 = g0n0 only after the calculation of the derivative of the grand

potential Ω. After these operations, according to Eq. (2.77), one obtains the excitation
spectrum Ek(n0)

Ek(n0) =

√
~2k2

2m

(
~2k2

2m
+ 2n0g0

)
(3.4)

Differently, to derive the thermodynamic properties of the system, it is necessary to
substitute in the excitation spectrum the mean field value of the order parameter given
by the saddle point condition ψ2

0 = µ/g0 of Eq. (2.2). For bosons with zero-range
interaction, this leads to the Bogoliubov excitation spectrum [8]

Ek,Bogoliubov =

√
~2k2

2m

(
~2k2

2m
+ 2µ

)
(3.5)

A remarkable property of the Bogoliubov spectrum Ek,Bogoliubov is that it is phononic for
low wavenumbers, while it approaches a free-particle spectrum for large wavenumbers.
The Bogoliubov spectrum has been plotted in Fig. (3.1).

Figure 3.1: Bogoliubov spectrum Ek,Bogoliubov (red solid line), where the energy is plotted in unity
of 2µ, while the wavevector is rescaled in unity of ~/(4mµ). Notice that the Bogoliubov spectrum
approaches a phononic dispersion law (black dashed line) for low values of the wavevector k, while
it grows quadratically for large k, namely as a free-particle spectrum.



3.1. ZERO-RANGE INTERACTION IN D DIMENSIONS 43

According to the Landau criterion (2.33) the fact that the excitation spectrum is linear
for k → 0 implies that we are describing a superfluid system. In particular, the system
shows a superfluid flow for fluid velocities under the sound velocity u, given by

u =

√
~2µ

m
(3.6)

3.1.1 Thermodynamic properties

We now study the thermodynamic properties of bosons with zero-range interaction,
implementing the equations obtained in the section (2.1). Since it is fundamental to
derive all the other thermodynamical functions, we will focus on the calculation of the
grand potential per unit of volume Ω/LD, given at a gaussian level by Eqs. (2.4) and
(2.5), obtaining explicit results in D = 3 and D = 2.

Regarding the order parameter grand potential Ω0/L
D, since it does not depend on

V (~k), it is given by Eq. (2.4), namely

Ω0

LD
= − µ2

2g0
(3.7)

We focus on the gaussian contribution Ωg of the grand potential (1.66) which consists of
two terms: let us first consider the zero-temperature term. Employing the Bogoliubov
spectrum Ek,Bogoliubov of Eq. (3.5), we express the zero-temperature gaussian grand

potential per unit of volume Ω
(0)
g /LD in the thermodynamic limit as

Ω
(0)
g

LD
=

1

2

∫
dDk

(2π)D

√
~2k2

2m

(
~2k2

2m
+ 2µ

)
(3.8)

Since the integrand function depends only on the modulus of the wavevector |~k|, we
calculate the integral using D-dimensional spherical coordinates, namely

Ω
(0)
g

LD
=

SD
2(2π)D

∫ +∞

0
dk kD−1

√
~2k2

2m

(
~2k2

2m
+ 2µ

)
(3.9)

Changing the integration variable to t = ~2k2/(4mµ) the integral can be recast in the
adimensional form

Ω
(0)
g

LD
=

SD
(2π)D

(
m

~2

)D/2
µ
D+2

2

∫ +∞

0
dt t

D−1
2 (1 + t)1/2 (3.10)

The last integral is evidently divergent, though it can be regularized following the di-
mensional regularization procedure described in section (1.4). The first step consists in
extending the integral to the complex dimension D = D − ε, so that

Ω
(0)
g

LD
=

κεµ

Γ[D/2]

(
mµ

π~2

)D/2 ∫ +∞

0
dt t

D−1
2 (1 + t)1/2 (3.11)
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where the wavevector κ has been introduced for dimensional reasons, due to the extension
to complex dimension D . The integral can now be rewritten in terms of the Euler beta
function (1.75), such as, using the property of Eq. (1.77) and the ε → 0 expansion

(1.81), the zero-temperature grand potential per unit of volume Ω
(0)
g /LD reads

Ω
(0)
g

LD
= − µ

D+2
2

2 π
D+1

2

(
m

~2

)D/2 [
1 +

ε

2
ln

(
π~2κ2

mµ

)
+ o(ε2)

]
·

Γ[(D − ε+ 1)/2] Γ[(−D + ε− 2)/2]

Γ[(D − ε)/2]
(3.12)

Since the form of Eq. (3.12) changes depending on the spatial dimension D, before
substituting D we calculate the thermal gaussian contribution to the grand potential.

According to the second term of Eq. (2.5), we write the thermal gaussian grand potential

per unit of volume Ω
(T )
g /LD in the thermodynamic limit as

Ω
(T )
g

LD
=

1

β

∫
dDk

(2π)D
ln
(

1− e−βEk,Bogoliubov

)
(3.13)

As we have already mentioned, the fact that the Bogoliubov spectrum Ek,Bogoliubov

depends only on |~k| allows us to use the D-dimensional spherical coordinates (1.72),
such as

Ω
(T )
g

LD
=

SD
β(2π)D

∫ +∞

0
dk kD−1 ln

(
1− e−βEk,Bogoliubov

)
(3.14)

An integration by parts leads to the expression

Ω
(T )
g

LD
= − 1

2D−1πD/2Γ[D/2] D

∫ +∞

0
dk kD

∂Ek,Bogoliubov

∂k

1

eβEk,Bogoliubov − 1
(3.15)

where we have substituted the explicit form of SD. Unlike the zero-temperature contri-

bution (3.12), Ω
(T )
g /LD is convergent. However, this integral can be calculated analiti-

cally only in the low-temperature regime, in which it is useful to introduce the variable
x = βEk,Bogoliubov. The gaussian finite-temperature grand potential correction now be-
comes

Ω
(T )
g

LD
= − 1

2D−1πD/2Γ[D/2] βD

∫ +∞

0
dx k(x)D

1

ex − 1
(3.16)

where we express k(x) as a function of x as

k(x) =

√
2mµ

~2

√√√√−1 +

√
1 +

x2

µ2β2
(3.17)

The integral in Eq. (3.16) can be explicitly performed by expanding the function k(x) in
the low-temperature regime. Since the integrand depends on the system dimension D,
we need to explicitly substitute it. In the following we calculate the zero-temperature

gaussian grand potential per unit of volume Ω
(0)
g /LD and the thermal gaussian grand

potential per unit of volume Ω
(T )
g /LD first in D = 3, then in D = 2.
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D=3

To calculate the zero-temperature gaussian grand potential in the three-dimensional case,
the extension to complex dimension is not really necessary, since the gamma functions
involved converge to finite values. For this reason, it is sufficient to put D = 3 and
directly substitute ε = 0 in equation (3.12), obtaining

Ω
(0)
g

L3
=

8

15π2

(
m

~2

)3/2

µ5/2 (3.18)

The thermal gaussian grand potential can be calculated by expanding the integrand of
(3.16) in the low-temperature limit and choosing D = 3. A simple integration leads to

Ω
(T )
g

L3
= −π

2

90

(
m

~2

)3/2 (kBT )4

µ3/2
+ o((kBT )6) (3.19)

The beyond mean field grand potential per unit of volume Ω/L3, up to gaussian correc-
tions then becomes

Ω

L3
= − µ2

2g0
+

8

15π2

(
m

~2

)3/2

µ5/2 − π2

90

(
m

~2

)3/2 (kBT )4

µ3/2
+ o((kBT )6) (3.20)

which is in full agreement with previously known results [10].

D=2

In the two-dimensional case dimensional regularization itself is not sufficient and Ω
(0)
g /L2

is still divergent due to the presence of Γ[−2] in Eq. (3.12) where D = 2 is substituted.
This divergence can be removed performing all the steps described in section (1.4), i. e.
expanding the various functions for ε→ 0. Doing so one obtains

Ω
(0)
g

L2
= − mµ2

2π3/2~2

[
π1/2

2

1

ε
+
π1/2

8
(ln(16)− 2γ − 1) +

π1/2

4
ln

(
π~2κ2

mµ

)
+ o(ε)

]
(3.21)

In the renormalization spirit of ”extracting finite information from infinities” [49] we
delete the diverging o(ε−1) term and rearrange the remaining terms in the form

Ω
(0)
g

L2
= −mµ

2

8π~2

[
ln

(
4π~2κ2

mµeγ

)
− 1

2

]
(3.22)

We also add the order parameter grand potential, obtaining the zero-temperature part
of the grand potential

Ω0

L2
+

Ω
(0)
g

L2
= − µ2

2g0
− mµ2

8π~2

[
ln

(
4π~2κ2

mµeγ

)
− 1

2

]
(3.23)
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The scale κ can be fixed comparing this equation with the zero-temperature pressure
derived by Popov [41] and identifying the energy cutoff

ε0 =
4π~2κ2

m exp
(
γ − 4π~2

mg0

) (3.24)

In this way we obtain the zero-temperature part of the grand potential per unit of area
in the renormalized form

Ω0

L2
+

Ω
(0)
g

L2
= −mµ

2

8π~2

[
ln

(
ε0
µ

)
− 1

2

]
(3.25)

Notice that in reference [37] the authors obtained a two-loop (beyond gaussian) correc-
tion that goes as [ln(ε0/µ)]−1.

Like in the three-dimensional case, we can calculate also the thermal gaussian contri-

bution Ω
(T )
g /L2 expanding the integrand of the equation (3.16) in the zero-temperature

limit and choosing D = 2, obtaining

Ω
(T )
g

L2
= −ζ(3)

2π

(
m

~2

)
(kBT )3

µ
+ o((kBT )5) (3.26)

Finally, we get the renormalized two-dimensional grand potential calculated up to gaus-
sian corrections

Ω

L2
= −mµ

2

8π~2

[
ln

(
ε0
µ

)
− 1

2

]
− ζ(3)

2π

(
m

~2

)
(kBT )3

µ
+ o((kBT )5) (3.27)
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3.1.2 Quantum depletion and thermal condensate fraction

We now explicitly implement the Eq. (2.21) for the zero-temperature density n (n0, T = 0)
in the case of bosons with zero-range interaction. Since the system density is given by
the expression

n = n0 + f (0)
g (n0) (3.28)

we need to calculate the zero-temperature density contribution f
(0)
g (n0), given by Eq.

(2.24) in which the zero-range interaction V (~k) = g0 is substituted, namely

f (0)
g (n0) =

1

2

∫
dDk

(2π)D

~2k2

2m + g0n0√
~2k2

2m

(
~2k2

2m + 2g0n0

) (3.29)

Using D-dimensional spherical coordinates we rewrite the previous quantity as

f (0)
g (n0) =

SD
2(2π)D

∫ +∞

0
dk kD−1

~2k2

2m + g0n0√
~2k2

2m

(
~2k2

2m + 2g0n0

) (3.30)

Notice that this integral is ultraviolet divergent, but can be regularized following the
standard procedure of dimensional regularization outlined in section (1.4). First of
all, as we have done for the grand potential in the previous section, we introduce the
integration variable t = ~2k2/(4mg0n0) to get an adimensional integral and we extend
the system spatial dimension D to the complex dimension D = D − ε. We obtain

f (0)
g (n0) =

κε

2Γ(D/2)

(
mg0n0

π~2

)D/2 ∫ +∞

0
dt
t

D−1
2 + t

D−3
2

(1 + t)1/2
(3.31)

The divergent integral is then regularized remembering the property (1.77) of the beta
function, using the recursive relation (1.76) for the gamma function and expanding the

result for low values of ε, such as the zero-temperature density contribution f
(0)
g (n0)

reads

f (0)
g (n0) =

(D − 2− ε)
8π

D+1
2

(
mg0n0

~2

)D/2[
1 +

ε

2
ln

(
π~2κ2

mg0n0

)
+ o(ε2)

]
·

Γ[(ε−D)/2] Γ[(D − ε− 1)/2]

Γ[(D − ε)/2]
(3.32)

Before proceeding to explicit calculation of this contribution in D = 3 and D = 2, we

also calculate the thermal contribution f
(T )
g (n0) to the system density n (n0, T ) of Eq.

(2.25). Differently from the zero-temperature contribution, f
(T )
g (n0) is convergent and

for a system of bosons with zero-range interaction is given by

f (T )
g (n0) =

SD
(2π)D

∫ +∞

0
dk

kD−1

eβEk(n0) − 1

~2k2

2m + n0g0

Ek(n0)
(3.33)
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where Ek(n0) is the excitation spectrum (3.4). To perform the analytical calculation
of the integral we use the variable x = βEk(n0), in terms of which the gaussian finite-
temperature density correction becomes

f (T )
g (n0) =

SD
(2π)DkBT

∫ +∞

0
dx

dk(x)

dx

k(x)D−1

x(ex − 1)

(
~2k(x)2

2m
+ n0g0

)
(3.34)

where

k(x) =

√
2mn0g0

~2

√√√√−1 +

√
1 +

(kBT )2x2

n2
0g

2
0

(3.35)

The calculation of f
(T )
g (n0) can be performed analytically only in the low temperature

limit, in which we will expand the integrand after explicitly choosing the spatial dimen-
sion D.

Let us now substitute D = 3 and D = 2 in the equations (3.32) and (3.34).

D=3

To obtain the three-dimensional value of the zero-temperature density contribution

f
(0)
g (n0), it is sufficient to substitute D = 3 and ε = 0 into the equation (3.32), ob-

taining

f (0)
g (n0) =

1

3π2

(
mg0n0

~2

)3/2

(3.36)

Hence, the zero-temperature equation for the number density (2.21) is

n = n0 +
1

3π2

(
mg0n0

~2

)3/2

(3.37)

With the scattering theory [47] the contact interaction strength g0 is related to the
s-wave scattering length as by

g0 =
4π~2as
m

(3.38)

It follows that the zero-temperature total density n is related to the condensate density
n0 through the formula

n = n0

[
1 +

8

3
√
π

(n0a
3
s)

1/2

]
(3.39)

Our result is consistent at the order o((na3
s)

1/2) with the Bogoliubov formula for quantum
depletion [8]. In fact, approximating the condensate density n0 with n in the second
term in the square bracket and expanding n0/n around small values of the gas parameter
(na3

s)
1/2 we reproduce Bogoliubov’s result

n0

n
= 1− 8

3
√
π

(na3
s)

1/2 (3.40)
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Since we are studying weakly-interacting bosons, for which it is assumed that the three-
dimensional gas parameter is na3

s � 1, we expect that condensate fraction n0/n obtained
from our Eq. (3.39) is consistent.

The plot of the condensate fraction n0/n at zero temperature can be made by rewriting
Eq. (3.39) in terms of the rescaled density ñ and the rescaled condensate density ñ0 as

ñ = na3
s ñ0 = n0a

3
s (3.41)

in terms of which the relation (3.39) becomes

ñ = ñ0 +
8

3
√
π
ñ

3/2
0 (3.42)

Solving numerically the previous equation and obtaining the density ñ value for many
different values of ñ0 one can evaluate the condensate fraction n0/n = ñ0/ñ for many
values of the gas parameter na3

s = ñ.

In Fig. 3.2 we compare Eq. (3.39), blue solid line, with Eq. (3.40), red dashed line,
plotting the condensate fraction n0/n in terms of the gas parameter na3

s. Notice that, in
the weakly-interacting regime in which the gas parameter is na3

s ≈ 10−5, the condensate
fraction is around 0.99. This result is in good agreement with the experimental results for
cold alkali-atoms systems, for which the contact interaction approximation is good, while,
in the case of He-II in which the condensate fraction is less than 10%, this framework is
not reliable.

Figure 3.2: Zero-temperature condensate fraction n0/n for three-dimensional bosons with contact
interaction, plotted as a function of the gas parameter na3

s. Blue solid line: our condensate
fraction, obtained from Eq. (3.39). Red dashed line: Bogoliubov condensate fraction (3.40).
Notice that the curves are coincident for low values of the gas parameter, in the physical regime
where it is expected that Eqs. (3.39) and (3.40) are equivalent.

Now we consider also the finite-temperature density contribution f
(T )
g (n0), which can be

obtained expanding the integrand of equation (3.34) for low temperatures and performing
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the integral in this limit, in which it is convergent. We find

f (T )
g (n0) =

(kBT )2

12(n0g0)1/2

(
m

~2

)3/2(
1− π2(kBT )2

20(n0g0)2

)
+ o((kBT )5) (3.43)

Putting the contributions of Eqs. (3.42) and (3.43) inside Eq. (2.25), we write the
number density n for contact-interacting bosons in the low-temperature limit as

n = n0 +
1

3π2

(
mg0n0

~2

)3/2

+
(kBT )2

12(n0g0)1/2

(
m

~2

)3/2

(3.44)

We now use this expression to calculate the thermal condensate fraction n0/n. First
of all we substitute the three-dimensional contact interaction strength g0 (expressed in
terms of the scattering length as with scattering theory in Eq. (3.38)), rewriting the
previous density equation as a function of the gas parameter na3

s in the equivalent form

1 =

(
n0

n

)
+

8

3
√
π

(na3
s)

1/2

(
n0

n

)3/2

+
1

24
√
π

(kBT )2

(na3
s)

1/6

(
m

~2n2/3

)2( n

n0

)1/2

(3.45)

We approximate (n0/n)3/2 ≈ 1 in the second term and (n0/n)1/2 ≈ 1 in the third term
at the right-hand side, since, under the hypothesis that the bosons are very weakly-
interacting and for low temperatures, these terms constitute a small correction of the
first. Then we obtain the thermal condensate fraction for very low values of the gas
parameter and temperatures, namely

n0

n
= 1− 8

3
√
π

(na3
s)

1/2

[
1 +

1

64

(kBT )2

(na3
s)

2/3

(
m

~2n2/3

)2 ]
(3.46)

However, notice that a general result for the thermal condensate fraction n0/n can only
be obtained numerically: in order to plot it we introduce the adimensional rescaled
temperature

T ∗ =
kBT

Er
(3.47)

where Er is an arbitrary reference energy given by

Er =
~2

m
n2/3 (3.48)

such as the Eq. (3.45) can be expressed in the implicit form(
n0

n

)
+

8

3
√
π

(na3
s)

1/2

(
n0

n

)3/2

+
1

24
√
π

T ∗2

(na3
s)

1/6

(
n

n0

)1/2

− 1 = 0 (3.49)

In Fig. (3.3) we represent the numeric solution of Eq. (3.49) for different values of the
gas parameter na3

s.
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Figure 3.3: Condensate fraction n0/n for bosons in D = 3 with contact interaction. The con-
densate fraction is represented as a function of the adimensional temperature T ∗ = kBT/Er,
rescaled with the arbitrary energy scale Er = ~2n2/3/m. The three curves are obtained as the
numerical solution of Eq. (3.49) with the explicit choice of the three-dimensional gas parameter
na3

s values: 10−5 (grey solid line), 10−4 (blue dashed line), 10−3 (purple dot-dashed line)

D=2

In the two-dimensional case, the zero-temperature density contribution f
(0)
g of Eq. (3.32)

can be calculated taking into account the limit

lim
D→2,ε→0

(D − 2− ε) Γ[(ε−D)/2] = 2 (3.50)

Therefore f
(0)
g does not show the o(ε−1) divergence associated to the gamma function

Γ[(ε−D)/2] in D = 2, and the number density (2.21) reads

n = n0 +
1

4π

m

~2
g0n0 (3.51)

In two spatial dimensions the relationship between the strength g0 and the two-dimensional
s-wave scattering length as is more involved than in the three-dimensional case. At the
lowest order in the two-dimensional gas parameter na2

s the two-dimensional zero-range
interaction strength g0 is given by [6]

g0 =
4π~2

m

1

| ln(na2
s)|

(3.52)

Consequently the zero-temperature total number density n (n0, T = 0) can be written in
terms of the condensate density n0 as

n = n0 +
n0

| ln(na2
s)|

(3.53)



52 CHAPTER 3. EXPLICIT FORMULATION FOR D-DIMENSIONAL BOSONS

Notice that this equation is equivalent, in the weakly-interacting regime in which the
gas parameter na2

s � 1, to the familiar calculation of the condensate density made by
Schick, which reads [46]

n0

n
= 1− 1

| ln(na2
s)|

(3.54)

Analogously to the three-dimensional case, one can define the rescaled number density
and quasi-condensate rescaled number density

ñ = na2
s ñ0 = n0a

2
s (3.55)

in terms of which we calculate the condensate fraction ñ0/ñ rewriting Eq. (3.53) as

ñ0

ñ
=

1

1 + 1
| ln(ñ)|

(3.56)

In Fig. (3.4) we plot the condensate fraction n0/n = ñ0/ñ as a function of the two-
dimensional gas parameter given by the numerical solution of Eq. (3.56) and the numer-
ical condensate fraction obtained from the Schick result of Eq. (3.54). The comparison
between this plot and the analogous in D = 3 of Fig. (3.2) shows that the depletion
of the condensate, taken at the same values of the gas parameter, is higher in the two-
dimensional case.

Figure 3.4: Zero-temperature condensate fraction n0/n as a function of the gas parameter na2
s

for bosonic cold atoms in D = 2 interacting with the contact interaction (3.2). In the blue solid
line we represent the numerical solution of Eq. (3.56), while in the red dashed line we plot the
Schick relation (3.54). Notice that the curves are coincident for low value of the two-dimensional
gas parameter na2

s, which constitutes the physical regime in which we expect that our approach
holds.

As in the three-dimensional case, we would like to calculate the finite-temperature den-

sity contribution f
(T )
g (n0). However, substituting D = 2 in Eq. (3.34), we find the
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integral

f (T )
g (n0) =

mkBT

2π~2

∫ +∞

0
dx

1

ex − 1
(3.57)

which is infrared divergent, namely it diverges in the low energy part of the spectrum.
This kind of divergence has a physical meaning and is related to the Mermin-Wagner the-
orem. The theorem essentially states that in presence of a continuous symmetry, there
cannot be long-range-order in one- and two- dimensional systems. Since long-range-order
is related to the U(1) spontaneous symmetry breaking, the symmetry cannot be broken
and the ground state of the system shares the same symmetry of the hamiltonian. If
spontaneous symmetry breaking would happen, the sum of the long-wavelength fluctua-
tions of the system would diverge, which is exactly what happens with the divergence of

f
(T )
g (n0). In other words, Bose-Einstein condensation cannot occur in low-dimensional

systems at finite temperature, which is why our density expression in terms of n0 di-
verges. In this case one usually refers to quasi-condensation: in a finite-size system
(without taking the thermodynamic limit) there will be a finite local condensate frac-
tion, which becomes zero for an infinite system.
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3.1.3 Superfluid density

Let us remind that the superfluid density ns, which we calculate here for bosons with
contact interaction, is given by Eq. (2.82) as

ns = n (n0, T )− nn (n0, T ) (3.58)

Considering that the number density n (n0, T ) has been calculated in the previous sec-
tion, we calculate the normal density nn (n0, T ) according to Eq. (2.76), namely

nn (n0, T ) =
β~2SD

mD(2π)D

∫ +∞

0
dk kD+1 eβEk(n0)

(eβEk(n0) − 1)2
(3.59)

where Ek(n0) is the excitation spectrum (3.4). Since the integrand depends only on the
modulus of the wavevector |~k| we introduce the D-dimensional spherical coordinates

nn (n0, T ) =
β~2SD

mD(2π)D

∫ +∞

0
dk kD+1 eβEk(n0)

(eβEk(n0) − 1)2
(3.60)

In full analogy with the calculation of f
(T )
g (n0), we set x = βEk(n0), in terms of which

we can express the normal density

nn (n0, T ) =
β~2

2D−1πD/2mD Γ[D/2]

∫ +∞

0
dx

dk

dx
(x) k(x)D+1 ex

(ex − 1)2
(3.61)

where k(x) is given by Eq. (3.35).

As before, we must take the low-temperature limit to perform the integration of Eq.
(3.61) and we explicitly consider the D = 3 case and D = 2 case.

D=3

In the three-dimensional case we obtain the low-temperature normal density nn (n0, T )
as

nn (n0, T ) =
2π2

45

(
m

~2

)3/2 (kBT )4

(n0g0)5/2

(
1− 5π2(kBT )2

2(n0g0)2

)
+ o(kBT )7 (3.62)

It is worth noting that neglecting the o((kBT )6) correction, we reproduce the phononic
contribution to normal mass density ρn, as obtained by Landau in the form [29]

ρn = mnn =
2π2

45

(kBT )4

u5
(3.63)

where, accordingly to Eq. (3.6), the speed of sound u is now defined as

u =

√
~2n0g0

m
(3.64)
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Implementing the superfluid density formula of Eq. (2.82) we obtain, in the low-
temperature limit

ns = n0 +
1

3π2

(
mg0n0

~2

)3/2

+
(kBT )2

12(n0g0)1/2

(
m

~2

)3/2

− 7π2

144

(
m

~2

)3/2 (kBT )4

(n0g0)5/2
(3.65)

We employ this equation in the weakly-interacting regime and at very low temperatures
in which n ≈ n0 to express the superfluid fraction ns/n in terms of the temperature T
and the gas parameter na3

s as

ns
n

= 1− 1

720
√
π

(
m

~2n2/3

)4 (kBT )4

(na3
s)

5/6
(3.66)

However, the exact result for the superfluid fraction depends on the condensate fraction
n0/n and can be expressed as a function of the adimensional temperature T ∗ of Eq.
(3.47) in the implicit form

ns
n

= 1− 1

720
√
π

T ∗4

(na3
s)

5/6

(
n

n0

)5/2

(3.67)

Taking the condensate fraction n0/n from the numerical solution of Eq. (3.49) we solve
this equation to plot in Fig. (3.5) the superfluid fraction ns/n in terms of T ∗ for the gas
parameter value na3

s = 10−4.

Figure 3.5: Comparison between the superfluid fraction ns/n obtained from Eq. (3.67) (orange
solid line) and the condensate fraction n0/n given by (3.49) (blue dashed line). The curves are
represented in D = 3 as functions of the adimensional temperature T ∗ = kBT/Er, rescaled with
the arbitrary energy scale Er = ~2n2/3/m. To make the plot, we choose the gas parameter value
na3

s = 10−4. Notice that, at zero temperature T = 0, the superfluid fraction is equal to 1, while
the condensate fraction is lower than 1 because of the quantum depletion of the condensate of
interacting bosons.
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D=2

In the low-temperature limit, the two-dimensional number density is given by Eq. (3.61)
as

nn (n0, T ) =
3m

2π~2

(kBT )3

(n0g0)2

(
ζ(3)− 15ζ(5)

(n0g0)2
(kBT )2

)
+ o(kBT )6 (3.68)

Since the two-dimensional density contribution f
(T )
g is divergent, we calculate ns fol-

lowing the prescriptions of Eq. (2.85), thus expressing the condensate density n0 as a
function of the zero-temperature density n (n0, T = 0) of Eq. (3.53) and substituting it
in nn (n0, T ). Therefore, we find the superfluid density ns in the low-temperature regime
as a function of n

ns = n− 3ζ(3)m

2π~2

(kBT )3

(ng0)2

(
1 +

mg0

4π~2

)2

(3.69)

Notice that, taking the lowest order in the expansion for g0 = 4π~2/(m| ln
(
na2

s

)
|) → 0

of the previous equation, we get the superfluid fraction ns/n as

ns
n

= 1− 3ζ(3)

32π3

(
m

~2n

)3

| ln
(
na2

s

)
|2(kBT )3 (3.70)

which is also the result obtained from the Landau formula in the case D = 2, where
µ = g0n, with g0 given by Eq. (3.52).

Finally, the exact superfluid fraction can be obtained numerically expressing ns of Eq.
(3.69) in terms of the two-dimensional rescaled temperature

T ∗ =
kBT

Er
(3.71)

where Er = ~2

mn is an arbitrary energy scale (notice that n is the two-dimensional
density). The superfluid density ns/n becomes

ns
n

= 1− 3ζ(3)

32π3

(
1 + | ln

(
na2

s

)
|
)2
T ∗3 (3.72)

In Fig. (3.6) we plot ns/n as a function of the adimensional temperature T ∗, for different
choices of the two-dimensional gas parameter value na2

s.
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Figure 3.6: Superfluid fraction ns/n of a two-dimensional D = 2 system of bosons interacting
with the zero-range interaction (3.2). The plot is obtained calculating ns/n from Eq. (3.72) as
a function of the rescaled temperature T ∗ = kBT/Er, where Er = ~2n/m. The plot is made for
an explicit choice of the gas parameter na2

s values: 10−5 (blue solid line), 10−4 (orange dashed
line), 10−3 (purple dot-dashed line).
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3.2 Finite-range effective interaction in D dimensions

The contact zero-range interaction (3.2) studied in the previous section constitutes an
approximation in the low-energy limit of the real interaction V (~r, ~r ′) between bosons.
Here we try to improve this approximation including a finite-range effective interaction
term, which constitutes a small correction of the contact interaction strength g0.

The key assumption of this section is that the real space interaction potential depends
only on the distance between particles

V (~r, ~r ′) = V (|~r − ~r ′|) (3.73)

Notice that this hypothesis is not general and is suitable only for cold atoms systems in
which the anisotropic dipolar effects are negligible. For instance, it cannot be used for
the theoretical description of atomic species with a large magnetic momentum like 52Cr,
164Dy, 168Er, whose condensation has been achieved in the last years [1,19,34]. In fact,
the study of such systems requires the inclusion of long-range dipolar effects [7], taken
into account by the dipolar interaction

Vdd(~r − ~r ′) =
µµ0

4π

1− 3(cos θ)2

|~r − ~r ′|3
(3.74)

which is the interaction between polarized bosons with magnetic momentum µ, with the
angular dependence of the interaction on θ, the angle between the polarization direction
and ~r − ~r ′.

In the following, we will concentrate on cold atoms systems where the isotropy assump-
tion (3.73) holds. In particular, we want to study the effects of a finite-range correction
to the contact interaction of Eq. (3.2). Following a perturbative approach, we take the
lowest order correction to the contact interaction in a gradient expansion of the real
momentum space interaction potential

V (~k) = g0 + g2k
2 (3.75)

We now calculate the form of the coupling constants g0 and g2 and we verify that the
coupling of the linear term in k is zero due to Eq. (3.73). Since the atoms interact
at a very low energy, we expect that the momentum k exchanged is almost equal to
zero. Therefore, we explicitly calculate the Fourier transform (1.40) of the real space
interaction V (|~r − ~r ′|) ≡ V (|~r|) in the low momentum limit ~k → 0

V (~k) =

∫
dDr ei

~k·~r V (|~r|) =

=

∫
dDr V (|~r|) + i~k ·

∫
dDr ~r V (|~r|) +

k2

2

∫
dDr r2 V (|~r|) + · · ·

(3.76)
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As mentioned before, the linear term in ~k is zero due to the symmetry of the integral,
while we define the coupling constants g0 and g2 as

g0 =

∫
dDr V (|~r|) (3.77)

g2 =
1

2

∫
dDr r2 V (|~r|) (3.78)

It has also been shown that the potential (3.75) can be obtained as the Fourier transform
of the real space pseudopotential [18]

V (~r, ~r ′) = g0δ(~r − ~r ′)−
g2

2
[ ~∇2δ(~r − ~r ′) + δ(~r − ~r ′)~∇2] (3.79)

In this section, we follow the procedures and the results previously outlined, to derive the
thermodynamic properties, the number density and the superfluid density of a bosonic
system of cold atoms considering the finite-range effective interaction.

Since the general treatment of section (1.3) is valid for a generic interaction V (k), it
can be particularized in the case of the finite-range interaction (3.75). In this case, the
general excitation spectrum (3.3) is given by

Ek =

√(
~2k2

2m
− µ+ ψ2

0(2g0 + g2k2)

)2

−
(
ψ2

0(g0 + g2k2)
)2

(3.80)

To study the thermodynamic properties of the system one needs to substitute the mean
field value of the uniform field ψ2

0 = µ/g0, obtaining, for a bosonic system of atoms
interacting with the finite-range interaction (3.75), the mean field excitation spectrum

Ek,finite-range =

√
~2k2

2m

(
~2k2

2m
λ(g2, µ/g0) + 2µ

)
(3.81)

where

λ(g2, µ/g0) = 1 +
4m

~2

µ

g0
g2 (3.82)

takes into account the finite-range effects of the interaction. Notice that Ek,finite-range

reduces to the familiar Bogoliubov spectrum (3.5) if the contact interaction is restored
by putting g2 = 0.

Differently, to obtain the number density n (n0, T ) and the superfluid density ns, one
must substitute the chemical potential µ with the effective value expressed in terms of
the condensate density µeff = g0ψ

2
0 = g0n0, obtaining

Ek(n0) =

√
~2k2

2m

(
~2k2

2m
λ(g2, n0) + 2g0n0

)
(3.83)

In the next subsections, we follow the same path outlined for the implementation of
the equations for zero-range interaction to extend the previous results for a system of
bosons with finite-range interaction. Due to this formal analogy, we will not stress all
the technical calculation details at the same level of description used before.
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3.2.1 Thermodynamic properties

Analogously to the contact interaction case, we calculate the grand potential per unit
of volume Ω/LD, which can be used to derive the other thermodynamic properties of
section (2.1). Since the contribution Ω0/L

D depends only on g0 and is already known,

we focus on the zero-temperature gaussian contribution Ω
(0)
g /LD to the grand potential.

We calculate it substituting the finite-range spectrum (3.81) in the first term of the
gaussian grand potential per unit of volume (2.5) and using D-dimensional spherical
coordinates, namely

Ω
(0)
g

LD
=

SD
2(2π)D

∫ +∞

0
dk kD−1

√
~2k2

2m

(
~2k2

2m
λ(g2, µ/g0) + 2µ

)
(3.84)

In order to perform the dimensional regularization of this ultraviolet divergent integral,
we use the adimensional integration variable t = ~2k2λ(g2, µ/g0)/(4mµ) and we extend
the spatial dimension D of the system to the complex dimension D = D− ε, where ε is
infinitesimal. We obtain

Ω
(0)
g

LD
=

κεµ

Γ[D/2]

1

λ(g2, µ/g0)1/2

(
mµ

π~2λ(g2, µ/g0)

)D/2 ∫ +∞

0
dt t

D−1
2 (1 + t)1/2 (3.85)

By the means of the Euler beta and gamma functions and expanding the factors for

small ε, we get the regularized zero-temperature gaussian grand potential Ω
(0)
g /LD for

bosons with zero-range interaction

Ω
(0)
g

LD
= − µ

D+2
2

2 π
D+1

2

(
m

~2

)D/2 1

λ(g2, µ/g0)
D+1

2

[
1 +

ε

2
ln

(
π~2κ2λ(g2, µ/g0)

mµ

)
+ o(ε2)

]
·

Γ[(D − ε+ 1)/2] Γ[(ε−D − 2)/2]

Γ[(D − ε)/2]
(3.86)

that reproduces exactly the expression of Eq. (3.12) obtained in the zero-range interac-
tion case if g2 = 0.

Before substituting the spatial dimension D in Ω
(0)
g /LD, we calculate the gaussian ther-

mal grand potential Ω
(T )
g /LD, which, according to the second term of Eq. (2.5), is given

by

Ω
(T )
g

LD
=

SD
β(2π)D

∫
dk kD−1 ln

(
1− e−βEk,finite-range

)
(3.87)

where we have used D-dimensional spherical coordinates, since the integrand depends
only on |~k|. Performing an integration by parts we rewrite it as

Ω
(T )
g

LD
= − 1

2D−1πD/2Γ[D/2] D

∫ +∞

0
dk kD

∂Ek,finite-range

∂k

1

eβEk,finite-range − 1
(3.88)
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Since the analytical integration of Ω
(T )
g /LD is possible only in the low-temperature

regime, we define the integration variable x = βEk,finite-range, such as the thermal gaus-
sian grand potential becomes

Ω
(T )
g

LD
= − 1

2D−1πD/2Γ[D/2] βD

∫ +∞

0
dx k(x)D

1

ex − 1
(3.89)

where we define k(x) as

k(x) =

√
2mµ

~2λ(g2, µ/g0)

√√√√−1 +

√
1 +

(kBT )2λ(g2, µ/g0)x2

µ2
(3.90)

Let us calculate explicitly the gaussian zero-temperature grand potential (3.86) and the
gaussian thermal grand potential (3.89) in D = 3 and in D = 2.

D=3

In the three-dimensional case, it is sufficient to substitute the dimension D = 3 and put
ε = 0 in Eq. (3.86), to get the regularized zero-temperature gaussian grand potential as

Ω
(0)
g

L3
=

8

15π2

(
m

~2

)3/2 µ5/2

λ(g2, µ/g0)2 (3.91)

The thermal gaussian grand potential is obtained as the integral of the low-temperature
expansion of the integrand in (3.89), which in D = 3 gives

Ω
(T )
g

L3
= −π

2

90

(
m

~2

)3/2 (kBT )4

µ3/2

(
1− 5π2

7

(kBT )2λ(g2, µ/g0)

µ2

)
+ o((kBT )7) (3.92)

Notice that the lowest order term in the temperature of Ω
(T )
g /L3 does not depend on

λ(g2, µ/g0), meaning that, in the low-temperature limit, the correction of the zero-range
interaction with a finite-range term does not influence the thermal part of the gaussian
grand potential.

The beyond mean field grand potential per unit of volume, up to gaussian corrections
reads

Ω

L3
= − µ2

2g0
+

8

15π2

(
m

~2

)3/2 µ5/2

λ(g2, µ/g0)2−

π2

90

(
m

~2

)3/2 (kBT )4

µ3/2

(
1− 5π2

7

(kBT )2λ(g2, µ/g0)

µ2

)
(3.93)

which reproduces a previously known result [10].
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D=2

Despite the dimensional regularization procedure, the substitution of D = 2 in the zero-
temperature grand potential (3.86) shows a o(ε−1) divergence of Γ[ε]. We treat the
divergence expanding the grand potential for small ε, obtaining

Ω
(0)
g

L2
= − mµ2

2π3/2λ(g2, µ/g0)3/2~2

[
π1/2

2

1

ε
+
π1/2

8
(ln(16)− 2γ − 1)+

π1/2

4
ln

(
πλ(g2, µ/g0)~2κ2

mµ

)
+ o(ε)

]
(3.94)

According to the prescriptions of section (1.4), we delete the o(ε−1) divergence in the
square bracket and rearrange the other contributions in the form

Ω
(0)
g

L2
= − mµ2

8π~2λ(g2, µ/g0)3/2
ln

(
4π~2κ2

mµeγ+1/2
λ(g2, µ/g0)

)
(3.95)

Following the procedure introduced for bosons with zero-range interaction, we now write
the sum of the order parameter grand potential (1.62) and the zero-temperature gaussian
grand potential calculated above as

Ω0

L2
+

Ω
(0)
g

L2
= − µ2

2g0
− mµ2

8π~2λ(g2, µ/g0)3/2
ln

(
4π~2κ2

mµeγ+1/2
λ(g2, µ/g0)

)
(3.96)

In order to reproduce the contact interaction result in the case of zero finite-range cor-
rection g2 = 0, we identify the energy cutoff ε0 as

ε0 =
4π~2κ2

m exp
(
γ − 4π~2λ(g2,µ/g0)3/2

mg0

) (3.97)

to get the zero-temperature grand potential

Ω0

L2
+

Ω
(0)
g

L2
= − mµ2

8π~2λ(g2, µ/g0)3/2

[
ln

(
ε0
µ
λ(g2, µ/g0)

)
− 1

2

]
(3.98)

Notice that this equation corrects a previous result [43], in which λ(g2, µ/g0) inside the
logarithm has been neglected in the renormalization procedure.

At last, we calculate the thermal gaussian contribution Ω
(T )
g /L2, expanding the integrand

of the equation (3.89) in the zero-temperature limit and choosing D = 2, obtaining

Ω
(T )
g

L2
= − m

4π~2
(kBT )3

(
2ζ(3)

µ
− 6ζ(5)λ(g2, µ/g0)

µ3
(kBT )2

)
+ o((kBT )6) (3.99)
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The renormalized two-dimensional grand potential per unit of area in the low-temperature
regime is obtained from Eqs. (3.98) and (3.99) as

Ω

L2
= − mµ2

8π~2λ(g2, µ/g0)3/2

[
ln

(
ε0
µ
λ(g2, µ/g0)

)
− 1

2

]
−

m

4π~2
(kBT )3

(
2ζ(3)

µ
− 6ζ(5)λ(g2, µ/g0)

µ3
(kBT )2

)
(3.100)

3.2.2 Quantum depletion and thermal condensate fraction

Let us calculate the zero-temperature density n (n0, T = 0) of bosons with finite-range
interaction implementing Eq. (2.21), which we remind to be

n (n0, T = 0) = n0 + f (0)
g (n0) (3.101)

In full analogy with the previous section, we need to calculate the zero-temperature

correction f
(0)
g (n0) to the number density, which, using D-dimensional spherical coordi-

nates, is given by Eq. (2.24) in which the finite-range interaction (3.75) is substituted,
namely

f (0)
g (n0) =

SD
2(2π)D

∫ +∞

0
dk kD−1

~2k2

2m λ̃(g2, n0) + g0n0√
~2k2

2m

(
~2k2

2m λ(g2, n0) + 2g0n0

) (3.102)

where we define the functions

λ(g2, n0) = 1 +
4m

~2
g2n0 λ̃(g2, n0) = 1 +

2m

~2
g2n0 (3.103)

which, if a pure contact interaction is restored by putting g2 = 0, give λ(0, n0) =
λ̃(0, n0) = 1

To regularize the ultraviolet divergence of f
(0)
g (n0) we obtain an adimensional integral

using the integration variable t = ~2k2λ(g2, n0)/(4mg0n0), then we extend the spatial
dimension D to the complex value D = D−ε and we perform dimensional regularization.
We find

f (0)
g (n0) =

κελ(g2, n0)1/2

4Γ(D/2)

(
mg0n0

π~2λ(g2, n0)

)D/2 [
2
λ̃(g2, n0)

λ(g2, n0)
B

(
D + 1

2
,
−D

2

)
+

B

(
D − 1

2
,
2−D

2

)]
(3.104)

We explicitly substitute the Euler beta function expressed in terms of the gamma func-
tion (1.77) and we employ the recursive relation (1.76) for the gamma function. More-
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over, we also substitute the explicit definition of λ̃(g2, n0), to get the regularized zero-
temperature number density correction

f (0)
g (n0) =

1

8π1/2λ(g2, n0)
D−1

2

(
mg0n0

π~2

)D/2 ( π~2κ2

mg0n0
λ(g2, n0)

)ε/2
·[

(D − ε− 2)− 8m

~2

g2n0

λ(g2, n0)

]
Γ[ ε−D2 ] Γ[D−ε−1

2 ]

Γ[D−ε2 ]
(3.105)

Notice that if we put g2 = 0 the second term in the square bracket becomes zero, while
the first reproduces the known contact-interaction correction (3.32).

Before substituting the dimensionD in f
(0)
g (n0), let us also calculate the finite-temperature

gaussian correction f
(T )
g (n0) to the number density. Following its definition (2.27) we

write, in the case of finite-range interaction

f (T )
g (n0) =

∫
dDk

(2π)D
1

eβEk(n0) − 1

~2k2

2m λ(g2, n0) + n0g0

Ek(n0)
(3.106)

where

Ek(n0) =

√
~2k2

2m

(
~2k2

2m
λ(g2, n0) + 2n0g0

)
(3.107)

is the excitation spectrum. Using D-dimensional spherical coordinates and changing the
integration variable with x = βEk(n0), we obtain the finite-temperature number density
contribution

f (T )
g (n0) =

SD
(2π)DkBT

∫ +∞

0
dx

dk(x)

dx

k(x)D−1

x(ex − 1)

(
~2k(x)2

2m
λ(g2, n0) + n0g0

)
(3.108)

where k(x) is given by

k(x) =

√
2mn0g0

~2λ(g2, n0)

√√√√−1 +

√
1 +

(kBT )2λ(g2, n0)x2

n2
0g

2
0

(3.109)

Let us now explicitly substitute in the equations (3.105) and (3.108) for f
(0)
g (n0) and

f
(T )
g (n0) the dimensions D = 3 and D = 2.

D=3

The three-dimensional zero-temperature contribution f
(0)
g (n0) does not show o(ε−1) di-

vergences of the gamma functions, therefore we simply put D = 3 and ε = 0 in Eq.
(3.105), obtaining

f (0)
g (n0) =

1

3π2λ(g2, n0)

(
mg0n0

~2

)3/2[
1− 8m

~2

g2n0

λ(g2, n0)

]
(3.110)
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Since we expect that the finite-range interaction strength g2 constitutes a small correction
to the contact interaction, we expand the previous expression for small values of g2, to
find the zero-temperature density correction

f (0)
g (n0) =

1

3π2

(
mg0n0

~2

)3/2[
1− 12m

~2
g2n0

]
(3.111)

In this limit, the zero-temperature density n (n0, T = 0) of Eq. (2.21) is given by

n = n0 +
1

3π2

(
mg0n0

~2

)3/2[
1− 12m

~2
g2n0

]
(3.112)

With the scattering theory, we relate the contact interaction strength g0 and the finite-
range interaction strength g2 with the three-dimensional scattering length as and of the
effective range of the interaction reff by [10]

g0 =
4π~2as
m

g2 =
2π~2a2

sreff

m
(3.113)

The substitution of these parameters in the density (3.112) leads to an extension of the
three-dimensional result (3.39) obtained in the previous section, and gives

n = n0

[
1 +

8

3
√
π

(n0a
3
s)

1/2 − 64
√
π
reff

as
(n0a

3
s)

3/2

]
(3.114)

Notice that this result coincides with the one obtained by Andersen [4] unless than a
factor 2 in the finite-range correction.

We now define the rescaled adimensional density ñ and the rescaled condensate density
ñ0

ñ = na3
s ñ0 = n0a

3
s (3.115)

such as the rescaled density ñ is given by

ñ = ñ0

[
1 +

8

3
√
π

(ñ0)1/2 − 64
√
π
reff

as
(ñ0)3/2

]
(3.116)

The zero-temperature condensate fraction ñ0/ñ = n0/n is obtained as the numerical
solution of Eq. (3.116) and is reported in Fig. (3.7). In particular, we compare the zero-
range interaction condensate fraction, as obtained from our Eq. (3.39) (blue solid line)
and by Bogoliubov (3.40) (red dashed line), with the result for finite-range interaction of
Eq. (3.116) (black dot-dashed line). In the plot, we have chosen reff/as = −10, thus the
inclusion of a finite-range interaction correction in the three-dimensional uniform Bose
gas is relevant in the specific regime reff < −as. Fig. (3.7) also shows that the finite-
range interaction leads to relevant corrections for a gas parameter as & 10−3. In the
next section we will show that, for two-dimensional bosons, the finite-range corrections
are less pronounced.
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Figure 3.7: Zero-temperature condensate fraction n0/n as a function of the gas parameter na3
s

in D = 3. Here we represent the finite-range condensate fraction (black dot-dashed line) for the
effective range value reff/as = −10 in comparison with our contact interaction result (blue solid
line) and the Bogoliubov’s result (red dashed line). With a weak dependence on the choice of
reff, the finite-range correction becomes relevant for values of the gas parameter na3

s greater than
10−3.

We now calculate in D = 3 the convergent integral of the finite-temperature gaussian

contribution f
(T )
g (n0) in the low-temperature limit, namely

f (T )
g (n0) =

(kBT )2

12(n0g0)1/2

(
m

~2

)3/2(
1− π2(kBT )2λ(g2, n0)

20(n0g0)2

)
(3.117)

Notice that, differently from the zero-temperature density contribution f
(0)
g (n0), the

finite-range correction is not crucial around T = 0, since it involves only higher powers
of the temperature with respect to the leading phononic term.

Putting together the density contributions of Eq. (3.110), and (3.117) inside the number
density (2.25) we find the low-temperature density n (n0, T ) for bosons with finite-range
interaction in D = 3

n (n0, T ) = n0 +
1

3π2λ(g2, n0)

(
mg0n0

~2

)3/2[
1− 8m

~2

g2n0

λ(g2, n0)

]
+

(kBT )2

12(n0g0)1/2

(
m

~2

)3/2

(3.118)

We now use this equation to obtain the condensate fraction n0/n in terms of the tem-
perature, first in an approximated explicit form, then in the exact but implicit form.

Let us substitute the expression of λ(g2, n0) given by Eq. (3.82) in the number density
(3.118). We also replace the three-dimensional interaction strengths g0 and g2 with
their values (3.113) identified with scattering theory as functions of the s-wave scattering
length as and the effective range reff. Dividing both sides of the previous equation for
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the number density n, the last equation can be recast in terms of the thermal condensate
fraction n0/n as

1 =

(
n0

n

)
+

8

3
√
π

(na3
s)

1/2

(
n0

n

)3/2 1− 8(na3
s) reff/as(n0/n)

(1 + 8(na3
s) reff/as(n0/n))2 +

1

24
√
π

(kBT )2

(na3
s)

1/6

(
m

~2n2/3

)2( n

n0

)1/2

(3.119)

Under the hypothesis that the bosons are very weakly-interacting and working in the
limit of very low temperatures, we can approximate (n0/n)1/2 ≈ 1 in the third term and
(n0/n) ≈ 1 in the second term at the right-hand side. We get the condensate fraction
expanding for low values of the gas parameter na3

s and for vanishing effective range
reff → 0, namely

n0

n
= 1− 8

3
√
π

(na3
s)

1/2

[
1− 24π(na3

s) reff/as +
1

64

(kBT )2

(na3
s)

2/3

(
m

~2n2/3

)2 ]
(3.120)

A more general relation, however, can be obtained without making any approximation
in the Eq. (3.119) with the simple definition of the adimensional rescaled temperature
T ∗ as in Eq. (3.47), obtaining the implicit equation

(
n0

n

)
+

8

3
√
π

(na3
s)

1/2

(
n0

n

)3/2 1− 8(na3
s) reff/as(n0/n)

(1 + 8(na3
s) reff/as(n0/n))2 +

1

24
√
π

T ∗2

(na3
s)

1/6

(
n

n0

)1/2

− 1 = 0 (3.121)

Figure 3.8: Condensate fraction n0/n in D = 3 as a function of the adimensional temperature
T ∗ = kBT/Er, with Er = ~2n/m. Here we compare the previous result for bosons with zero-
range interaction in D = 3 (upper curve) and the condensate fraction for bosons with finite-range
interaction (lower curve), for which we choose reff/as = −10.
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In Fig. (3.8) we plot the condensate fraction n0/n as a function of the rescaled tem-
perature T ∗, comparing the contact-interaction case (upper curve) with the finite-range
interaction case (lower curve) obtained from the numerical solution of Eq. (3.121). De-
spite giving different quantum depletion, the behavior for T > 0 of the curves is the

same, since, in the low-temperature expansion of f
(T )
g (n0), we have only considered the

lowest order term in kBT (which does not depend on the finite-range correction g2).

D=2

In the two-dimensional case we obtain the regularized zero-temperature density contri-

bution f
(0)
g (n0) from Eq. (3.105) where D = 2 is substituted. Notice that f

(0)
g (n0) is the

sum of the two terms inside the square bracket of (3.105): while the first term is finite due
to the limit (3.50), the second term is divergent, but can be easily calculated expanding
for small ε and deleting the divergent o(ε−1) terms. The regularized zero-temperature

density contribution f
(0)
g (n0) reads

f (0)
g (n0) =

mg0n0

4π~2

1

λ(g2, n0)3/2

[
λ̃(g2, n0) +

2m

~2
g2n0 ln

(
2ε0
g0n0

λ(g2, n0)

)]
(3.122)

where we identify the ultraviolet energy scale ε0 as

ε0 =
4π~2κ2

meγ
(3.123)

If the finite-range interaction strength g2, as we suppose, constitutes a small correction
of the zero-range term g0, we expand the previous equation for small values of the
adimensional parameter 2m

~2 g2n0

f (0)
g (n0) =

1

4π

mg0n0

~2
+

1

2π

(
m

~2

)2

g0g2n
2
0

[
ln

(
2ε0
g0n0

)
− 2

]
(3.124)

In this limit, the zero-temperature density n (n0, T = 0) of Eq. (2.21) reads

n (n0, T = 0) = n0 +
1

4π

mg0n0

~2
+

1

2π

(
m

~2

)2

g0g2n
2
0

[
ln

(
2ε0
g0n0

)
− 2

]
(3.125)

To get an approximated - but explicit - formula for the condensate fraction n0/n of a
two-dimensional bosonic system with finite-range interaction, we consider the weakly-
interacting regime in which g0, g2 → 0. In this regime we can approximate n2

0 ≈ n0n
in the third term of Eq. (3.125) and n0 ≈ n inside the logarithm. Moreover, we
also substitute back the definition of ε0, choosing the ultraviolet wavevector cutoff κ
proportional to the inverse of the scattering length as, namely κ = 2π/as. Thus, we get
the condensate fraction n0/n from Eq. (3.125) as

n0

n
=

1

1 + 1
4π

mg0

~2 + 1
2π

(
m
~2

)2
g0g2 ln

(
32π3~2

mg0na2
se
γ+2

) (3.126)
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Introducing the characteristic range R = 2
√
|g2/g0| of the interatomic potential, which

can be explicitly calculated for different forms of interatomic potentials [43], we can use
the scattering theory to identify the values of g0 and g2 as

g0 =
4π~2

m

1

| ln(na2
s)|

g2 =
π~2

m

R2

| ln(na2
s)|

(3.127)

where g0 is given by Eq. (3.52) and g2 has been obtained through the definition of the
characteristic range. We substitute these expressions in the Eq. (3.126) of the con-
densate fraction and, since we are limiting ourselves to the weakly-interacting regime,
we expand the right-hand term as the geometric series. We get the approximated con-
densate fraction n0/n as a function of the two-dimensional gas parameter na2

s and the
characteristic range R

n0

n
= 1− 1

| ln(na2
s)|
− 2π(R/as)

2

| ln(na2
s)|2

ln

(
8π2| ln

(
na2

s

)
|

na2
se
γ+2

)
(3.128)

Notice that the zero-range interaction result by Schick of Eq. (3.54) is easily reproduced
by setting R = 0.

We also derive a more general equation for n0/n, even though in an implicit form, valid
outside the very weakly-interacting regime. Substituting the values of g0 and g2 inside
the number density (3.125) we get

n (n0, T = 0) = n0 +
n0

| ln(na2
s)|

+
2πR2n2

0

| ln(na2
s)|2

ln

(
ε0m| ln

(
na2

s

)
|

2π~2n0e2γ

)
(3.129)

In order to plot n0/n as a function of the gas parameter na2
s, we employ the definitions

of the rescaled density ñ and the rescaled condensate density ñ0 of Eq. (3.55) and we
substitute back the value of ε0 according its definition, choosing the ultraviolet wavevec-
tor cutoff value κ = 2π/as. We obtain the implicit equation for the zero-temperature
condensate fraction

ñ0

ñ
+
ñ0

ñ

1

| ln(ñ)|

[
1 +

2πñ0R
2/a2

s

| ln(ñ)|
ln

(
κ2a2

s(| ln(ñ)|+ 4πñ0R
2/a2

s)

ñ0eγ+1

)]
− 1 = 0 (3.130)

The zero-temperature condensate fraction ñ0/ñ = n0/n obtained from Eq. (3.130) is
reported as the black dot-dashed line in Fig. (3.9), in comparison with the contact
interaction result of Eq. (3.53) (blue solid line) and the result by Schick of Eq. (3.54)
(red dashed line). In particular, we plot the finite-range curve for the effective range
value of R = 2as.

We emphasize that an analytical formula for the condensate fraction of a bosonic system
of cold atoms with a finite-range interaction in D = 2 constitutes a new result, even if
in the implicit form of Eq. (3.130).
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Figure 3.9: Condensate fraction n0/n at T = 0, reported as a function of the gas parameter
na2

s in two-dimensional D = 2 bosons. The red solid line is the condensate fraction for bosons
with zero-range interaction, obtained from Eq. (3.56). The black dashed line is the condensate
fraction for bosons with finite-range interaction given by Eq. (3.130) with a characteristic range
R value given by R = 2as and a ultraviolet cutoff κ = 2π/as.

Finally, following the contact interaction case, we may want to calculate also the finite-

temperature density contribution f
(T )
g (n0). However, substituting D = 2 in Eq. (3.108)

we find that

f (T )
g (n0) =

mkBT

2π~2

∫ +∞

0
dx

1

ex − 1
(3.131)

is infrared divergent, as one could expect from the beginning. This result also shows
that the inclusion of a finite-range interaction term is not relevant to the Mermin-Wagner
theorem.
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3.2.3 Superfluid density

Let us see how the superfluid density and the superfluid fraction of a bosonic system of
cold atoms changes with respect to the zero-range interaction if we include a finite-range
interaction contribution. Here we implement the superfluid density expression

ns = n (n0, T )− nn (n0, T ) (3.132)

Considering that n (n0, T ) is already known from the previous subsection, to derive the
superfluid density ns we only need to calculate the normal density nn (n0, T ), which,
according to Eq. (2.76), reads

nn (n0, T ) =
β

mD

∫
dDk

(2π)D
~2k2 eβEk(n0)

(eβEk(n0) − 1)2
(3.133)

where Ek(n0) is now the excitation spectrum defined in equation (3.107). Analogously

to the finite-temperature density contribution f
(T )
g (n0), we use D-dimensional spherical

coordinates and we set x = βEk(n0), obtaining

nn (n0, T ) =
β~2SD

mD(2π)D

∫ +∞

0
dx

dk

dx
(x) k(x)D+1 ex

(ex − 1)2
(3.134)

where k(x) is given by Eq. (3.109). The normal density can only be calculated analyti-
cally in the T → 0 limit, for which we need to explicitly consider the spatial dimensions
D = 3 and D = 2.

D=3

In the three-dimensional case we calculate nn (n0, T ) expanding the integrand of Eq.
(3.134) for low temperatures and performing the integration, in order to obtain

nn (n0, T ) =
2π2

45

(
m

~2

)3/2 (kBT )4

(n0g0)5/2

(
1−

5π2λ(g2, n0)(kBT )2

2(n0g0)2
+

99π4λ(g2, n0)2(kBT )4

8(n0g0)4

)
+ o(kBT )8 (3.135)

Notice that, analogously to f
(T )
g (n0) of Eq. (3.117), the finite-range correction term

λ(g2, n0) interests only higher order terms with respect to the leading low-temperature
contribution.

We now calculate the superfluid density ns as a function of the condensate density n0

and the temperature T putting the number density n (n0, T ) and the normal density
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nn (n0, T ) of Eqs. (3.118) and (3.135) inside the superfluid density (3.132), so that

ns = n0 +
1

3π2λ(g2, n0)

(
mg0n0

~2

)3/2[
1− 8m

~2

g2n0

λ(g2, n0)

]
+

(kBT )2

12(n0g0)1/2

(
m

~2

)3/2

− (3λ(g2, n0) + 32)π2

720

(
m

~2

)3/2 (kBT )4

(n0g0)5/2
(3.136)

Following the path outlined for the zero-range interaction, we now obtain an approxi-
mated expression of the superfluid fraction ns/n considering the very weakly-interacting
and low-temperature limit g0, g2 → 0, in which we can approximate n0 ≈ n. First of
all, we restore in the previous equation the number density n from its contributions
and we include higher-order temperature contributions from the normal density (3.135).
Then we explicitly substitute λ(g2, n0) from Eq. (3.103) and we employ the form of the
interaction strengths g0 and g2 of Eq. (3.38), identified with the scattering theory in
terms of as and reff. We obtain ns/n as

ns
n

= 1− 1

720
√
π

(
m

~2n2/3

)4 (kBT )4

(na3
s)

5/6

[
1− 5

32

(
m

~2n2/3

)2 (kBT )2

(na3
s)

2/3

(
1 + 8π

reff

as
(na3

s)

)]
(3.137)

where the finite-range correction appears only in the next-to-leading term in the tem-
perature.

Working outside the very weakly-interacting limit, a more general expression can be
obtained performing the same steps described above, except for the strong approximation
n0 ≈ n, and defining the adimensional rescaled temperature T ∗ as in Eq. (3.47). We
find that the superfluid fraction ns/n follows the implicit equation

ns
n

+
T ∗4

720
√
π(na3

s)
5/6

(
n

n0

)5/2[
1− 5

32

T ∗2

(na3
s)

2/3

(
n

n0

)2(
1 + 8π

reff

as

n0

n
(na3

s)

)]
− 1 = 0

(3.138)
This equation can be solved numerically for a fixed value of the gas parameter na3

s

to obtain the three-dimensional superfluid fraction ns/n of bosons with finite-range
interaction as a function of the rescaled temperature T ∗. In particular, the numerical
solution of this equation requires the knowledge of the condensate fraction n0/n in terms
of the adimensional temperature T ∗, which is given by Eq. (3.121) for the thermal
condensate fraction derived in the previous subsection. In Fig. (3.10) we plot ns/n in
terms of T ∗ for various choices of the three-dimensional gas parameter na3

s.
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Figure 3.10: Superfluid fraction ns/n of bosons with finite-range interaction in D = 3 as a
function of the rescaled temperature T ∗ = kBT/Er, where Er = ~2n2/3/m is an arbitrary
energy scale. In particular, we represent ns/n obtained from Eq. (3.138) for the explicit choice
of three values of the gas parameter na3

s: 10−6 (grey solid line), 2 · 10−6 (blue dashed line), 10−5

(purple dot-dashed line) and for an effective range value reff = as.

D=2

The two-dimensional normal density nn (n0, T = 0) of bosons with finite-range interac-
tion is obtained from the integration of Eq. (3.134), in which we expand the integrand
in the low temperature limit, namely

nn (n0, T = 0) =
3m

2π~2

(kBT )3

(n0g0)2

(
ζ(3)− 15ζ(5)λ(g2, n0)

(n0g0)2
(kBT )2

)
+ o(kBT )6 (3.139)

Since the thermal contribution to the density f
(T )
g (n0) is divergent in D = 2, we cannot

express the superfluid density as a function of the condensate density n0 at a finite
temperature T . Therefore, following the prescriptions of Eq. (2.85), we calculate the
low-temperature superfluid density ns as

ns = n− 3m

2π~2

(kBT )3

(g0 n0 (n, T = 0))2

(
ζ(3)− 15ζ(5)λ(g2, n0 (n, T = 0))

(g0 n0 (n, T = 0))2
(kBT )2

)
(3.140)

where n0 (n, T = 0) is the zero-temperature condensate density expressed in terms of the
zero-temperature number density n (n0, T = 0) of Eq. (3.125), which we rewrite here in
the equivalent form

n = n0 (n, T = 0) +
1

4π

mg0

~2
n0 (n, T = 0) +

1

2π

(
m

~2

)2

g0g2 n0 (n, T = 0)2

[
ln

(
2ε0

g0n0 (n, T = 0)

)
− 2

]
(3.141)
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Following the path previously outlined, we calculate first an approximated expression of
the superfluid fraction ns/n in the very weakly interacting regime where g0, g2 → 0, in
which we can approximate the condensate density inside Eq. (3.140) as n0 (n, T = 0) ≈
n. In the context of this approximation, we also substitute in Eq. (3.140) the explicit
form of the parameter λ(g2, n0) of Eq. (3.103). Moreover, we remember that the two-
dimensional interaction strengths g0 and g2 are given by Eq. (3.127), obtained in terms
of the s-wave scattering length as and the characteristic range R of the interatomic
potential with the scattering theory. The approximated superfluid fraction ns/n is given
by

ns
n

= 1− 3

32π3

(
m

~2n

)3

| ln
(
na2

s

)
|2(kBT )3

[
ζ(3)−

15ζ(5)

16π2

(
m

~2n

)2(
1 + 4π

R2

a2
s

na2
s

| ln(na2
s)|

)
| ln
(
na2

s

)
|2(kBT )2

]
(3.142)

Notice that, at the lowest order in the temperature, we reobtain the result of Eq. (3.70)
which does not include any finite-range correction though.

The complete expression for the superfluid fraction ns/n is calculated as a function of
the adimensional temperature T ∗ = kBT/Er, with Er = ~2n/m. We obtain it from
Eq. (3.140) following the same steps described for the calculation of the approximated
formula, except for the strong assumption n0 (n, T = 0) ≈ n, which is valid only in
the very weakly-interacting regime where the quantum depletion is negligible and at
low temperature, where the thermal depletion is not relevant. The exact but implicit
equation for the superfluid fraction ns/n in the low-temperature regime is given by

ns
n

+
3T ∗3

32π3
| ln
(
na2

s

)
|2
(
n

n0

)2[
ζ(3)−

15ζ(5)T ∗2

16π2
| ln
(
na2

s

)
|2
(
n

n0

)2(
1 + 4π

R2

a2
s

n0

n

na2
s

| ln(na2
s)|

)]
− 1 = 0 (3.143)

which, at the lowest order in the temperature expansion and for the characteristic range
value R = 0, reproduces the zero-range result of Eq. (3.72).

In Fig. (3.11) we plot the superfluid fraction ns/n in terms of the adimensional tem-
perature T ∗, obtained from the numerical solution of Eq. (3.143). The plot is made
considering different values of the two-dimensional gas parameter na2

s and fixing the
value of the characteristic range R of the interatomic potential to the value R = as.

As for the three-dimensional result of Eq. (3.138), we notice that the implicit equation
for ns/n depends on the condensate fraction n0/n. Since the phenomenon of Bose-
Einstein condensation cannot occur at finite temperature in D = 2, there cannot be
a nonzero finite-temperature result for n0/n. Therefore, for the numerical solution of
this equation, we employ the zero-temperature condensate fraction value, obtained from
(n0, T = 0) of Eq. (3.141). We expect that this approximation is reliable, at least in the
low-temperature regime where we suppose that our theory is correct.
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Figure 3.11: Superfluid fraction ns/n of bosons with finite-range interaction in D = 2 as a
function of the rescaled temperature T ∗ = kBT/Er, where Er = ~2n/m is an arbitrary energy
scale. In particular, we represent ns/n obtained from Eq. (3.138) for three values of the gas
parameter na3

s: 10−4 (grey solid line), 10−3 (blue dashed line), 10−2 (purple dot-dashed line)
and for an effective range value R = as.



Chapter 4

Conclusions and Outlook

In the thesis we have calculated the gaussian grand canonical partition function of a
bosonic cold atoms system within the functional integration approach. In a consistent
framework, we have been able to calculate the system number density and the superfluid
density, expressed as functions of the condensate density and the temperature. We
stress that, with an unified formalism and using the same procedure of dimensional
regularization of divergent integrals, we have obtained these equations in D spatial
dimensions and valid for a generic interaction potential V (~k).

This work reproduces important known results for uniform bosonic systems with a zero-
range interaction. Among them we remind the condensate fraction of three-dimensional
bosons as obtained by Bogoliubov in 1947 and the condensate fraction of two-dimensional
bosons, according to the result by Schick of 1971. Also the three- and two- dimensional
superfluid fraction is obtained coherently with the result of Landau.

Original contributions are provided in the case of bosons interacting with the finite-
range interaction. First of all we include all the finite-range dependent terms in the
gaussian grand potential in two dimensions, extending a previous result by Salasnich.
Moreover, we have obtained, for the first time with the finite-range interaction, the
condensate fraction in the two-dimensional case and the superfluid fraction in three
and in two spatial dimensions. These results are derived as a low-temperature series
expansion around T = 0, but an extension outside this specific limit can be provided
with a numerical solution of the temperature-dependent integrals encountered, like the

thermal number density contribution f
(T )
g (n0) and the normal density nn (n0, T ).

At last, we discuss the choice of focusing on the description of three- and two-dimensional
systems. While the study of three-dimensional interacting bosons is fundamental to un-
derstand the basic physical behavior of a bosonic cold atom system, the two-dimensional
case has been introduced in the perspective of extending the thesis work. In fact, all the
temperature-dependent results obtained here are valid in the low-temperature regime,
however, if an extension to finite temperatures would be feasible, in two-dimensional
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systems it is expected that the Berezinski-Kosterlitz-Thouless (BKT) topological phase
transition occur. It has been shown that [39], at a finite temperature, the superfluid
density jumps from a finite value to zero due to the unbinding of the vortex-antivortex
couples, which destroy the quasi-long-range order of the system. The BKT phenomenol-
ogy is indeed related to the vortical configurations of the phase of the complex field
ψ(~r, τ), which constitute topological defects of the phase. These terms are not been
explicitly included in the initial choice of the field parametrization, therefore we expect
that the BKT phenomenology cannot be reproduced with this approach. For some sug-
gestions on how to describe the BKT transition in our functional integration framework,
we refer the reader to the Appendix B.



Appendix A

Evaluation of Matsubara
summations

We illustrate here the procedure to calculate the summations over the bosonic Matsubara
frequencies ωn, which are defined as

ωn =
2πn

β~
(A.1)

where n ∈ Z are integer numbers. The most common summation we need to perform is
in the form

I[ξ~k] =
1

2β

+∞∑
n=−∞

ln[β2(~2ω2
n + ξ2

~k
)] (A.2)

Using the properties of the logarithm and considering that the summation involves all
n ∈ Z integers, both positive and negative, I[ξ~k] can also be rewritten in the useful form

I[ξ~k] =
1

β

+∞∑
n=−∞

ln[β(−i~ωn + ξ~k)] (A.3)

Taking the derivative of I[ξ~k] with respect to ξ~k in the Eq. (A.2) we get

∂I[ξ~k]

∂ξ~k
=

1

β

+∞∑
n=−∞

ξ~k
~2ω2

n + ξ2
~k

(A.4)

In the limit of zero temperature the difference

∆ω = ωn − ωn−1 =
2π

β~
−−−−→
β>>1

dω (A.5)

becomes infinitesimal and we can substitute the sum over n with an integral over ω,
obtaining

∂I[ξ~k]

∂ξ~k
=

1

β

∫ +∞

−∞
dω

β~
2π

ξ~k
~2ω2 + ξ2

~k

=
1

2
(A.6)
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which is the zero-temperature contribution to I[ξ~k]. If the temperature is relatively low,
but non-zero, we cannot substitute the sum in Eq. (A.4) with an integral, but we can
rewrite it as

∂I[ξ~k]

∂ξ~k
=

βξ~k
(2π)2

+∞∑
n=−∞

1

n2 +
(βξ~k

2π

)2 (A.7)

and using the identity
+∞∑
n=0

1

n2 + a2
=

1 + πa coth(πa)

2a2
(A.8)

we obtain
∂I[ξ~k]

∂ξ~k
=

1

2
coth

(
βξ~k
2

)
=

1

2
+

1

eβξ~k − 1
(A.9)

We integrate this equation on ξ~k and, setting the arbitrary constant resulting from the
indefinite integral to zero (it is not dependent on physical parameters), we finally obtain
the result of the summation over the Matsubara frequencies

I[ξ~k] =
ξ~k
2

+
1

β
ln
(

1− e−βξ~k
)

(A.10)



Appendix B

Phase-amplitude field
parametrization

The most simple way to describe a bosonic cold atoms system from an hydrodynamic
point of view is constituted by the following parametrization of the bosonic complex field
ψ(~r, τ)

ψ(~r, τ) =
√
ρ0 + δρ(~r, τ) e−i θ(~r,τ) (B.1)

where ρ0 is the uniform density of the system in the broken symmetry phase, δρ(~r, τ)
is the real field describing the density fluctuations and θ(~r, τ) is the real field of the
Goldstone mode, describing massless phase fluctuations of the system.

Before substituting the field parametrization inside the lagrangian (1.36), let us analyze
the fluctuation phase field θ(~r, τ), which is defined in the compact interval [0, 2π] and
is periodic of 2π. This crucial fact implies that the spatial and the imaginary time
derivatives of this field are not well-defined between 2π and 0 which, from a mathematical
point of view, constitutes the origin of many topological phenomena in condensed-matter
physics. In two-dimensional systems the singularities of the phase field - the vortices -
are responsible for the Berezinski-Kosterlitz-Thouless (BKT) transition, as explained by
Kosterlitz and Thouless in 1973 [25].

Since the study of the BKT topological phase transition is beyond the scope of this thesis,
we suppose to work in the very low-temperature regime, in which, the vortex-antivortex
phenomenology does not play a fundamental role. At very low temperatures, due to
the quasi-long-range phase coherence, the phase of the complex field ψ(~r, τ) varies very
slowly in space. Therefore, in the following we will assume that the domain of definition
of the phase field θ(~r, τ) can be extended to the interval ] −∞,∞[ and that its spatial
and time derivatives are well defined everywhere.

Taking into account the de-compactification of the phase field θ(~r, τ), we substitute the
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parametrization (B.1) in the lagrangian of Eq. (1.36), obtaining

L =− µρ0 − µ δρ+ i~ρ0∂τθ +
~2

8mρ0
(∇δρ)2 +

~2ρ0

2m
(∇θ)2+

1

2

∫
dDr′ V (~r − ~r ′)(ρ2

0 + δρ(~r, τ) + δρ(~r ′, τ) + ρ(~r, τ)δρ(~r ′, τ))

(B.2)

Notice that some terms are omitted because, thinking the lagrangian inside the action
(1.35), some terms can be integrated in the imaginary time τ variable and give zero
for the τ periodicity of the fields. Moreover, we keep only terms up to second order
in the fluctuation fields δρ(~r, τ) and θ(~r, τ), namely we make a gaussian (one-loop)
approximation.

Considering the lagrangian (B.2) inside the action S of Eq. (1.35), it is particularly
convenient to express S in terms of the Fourier series of the fluctuation fields, namely

δρ(~r, τ) =
1√
LD

∑
~k ωn

ei
~k·~re−iωnτδρ(~k, ωn)

θ(~r, τ) =
1√
LD

∑
~k ωn

ei
~k·~re−iωnτθ(~k, ωn)

δρ(~k, ωn) =
1

β~
√
LD

∫ β~

0
dτ

∫
LD

dDr e−i
~k·~reiωnτδρ(~r, τ)

θ(~k, ωn) =
1

β~
√
LD

∫ β~

0
dτ

∫
LD

dDr e−i
~k·~reiωnτθ(~r, τ) (B.3)

Notice that, since we are supposing that the phase field θ(~r, τ) is defined on R, its Fourier
components are non-numerable and can assume real values, therefore they can be treated
like ordinary functional integral variables.

The action in the Fourier space is obtained by simply substituting these Fourier com-
ponents in S and remembering the definition of the D + 1-dimensional delta function
(1.49) and the Fourier series (1.40) of the real space interaction potential. After some
calculations, we get

S = S0 + Sg (B.4)

where the homogeneous system action S0 is given by

S0 = β~LD
(
− µn0 +

1

2
g0n

2
0

)
(B.5)

and the gaussian action Sg is calculated as

Sg = β~
∑
~k ωn

[
~2k2ρ0

2m
θ(k)θ(−k)+

(
~2k2

8mρ0
+
V (~k)

2

)
δρ(k)δρ(−k)+~ωnθ(k)δρ(−k)

]
(B.6)
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Let us focus on the functional integration of the action Sg, which, being quadratic in
the fluctuation fields δρ(k) and θ(k), can be rewritten in the matricial form

Sg =
~
2

∑
~k ωn

(
θ(k) θ(−k) δρ(k) δρ(−k)

)
M(k)


θ(k)
θ(−k)
δρ(k)
δρ(−k)

 (B.7)

with the 4× 4 matrix M(k) given by

M(k) = β


0 ~2k2ρ0

m 0 ~ωn
~2k2ρ0

m 0 −~ωn 0

0 −~ωn 0 ~2k2

4mρ0
+ V (~k)

~ωn 0 ~2k2

4mρ0
+ V (~k) 0

 (B.8)

Performing the functional integration of the real fluctuation fields θ(k) and δρ(k) we
obtain the grand canonical partition function Z, which, following the first chapter, can
be written as

Z = Z0 + Zg (B.9)

with Z0 = e−S0/~ and Zg given by

Zg =
∏
~k ωn
kz>0

[det M(k)]−1/2 (B.10)

In full analogy with the first chapter we employ the grand canonical partition function
Z to calculate the grand potential Ω according to its definition (1.37), then, considering
that the sum over Matsubara frequencies can be performed with the same prescriptions
previously described (see Appendix A), we express the grand potential as the sum of
three contributions

Ω = Ω0 + Ω(0)
g + Ω(T )

g (B.11)

with the order parameter grand potential Ω0 given by

Ω0 =
(
− µρ0 +

1

2
g0ρ

2
0

)
LD (B.12)

while the zero- and the finite-temperature gaussian grand potential have the same exact
form of the first chapter, namely they are given respectively by (1.67) and (1.68), but
with the general excitation spectrum E~k in the form

E~k =

√
~2k2

2m

(
~2k2

2m
+ 2ρ0V (~k)

)
(B.13)

Notice that the saddle point condition ∂Ω0(µ, ρ0)/∂ρ0 = 0 here implies

ρ0 =
µ

g0
(B.14)
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which, substituted in the excitation spectrum gives the Bogoliubov spectrum of Eq. (3.5)
for bosons with zero-range interaction and the finite-range excitation spectrum of Eq.
(3.81) for bosons with finite-range interaction.

The bosonic field parametrization (B.1) in terms of the real fields θ(~r, τ) and δρ(~r, τ)
gives the same thermodynamic properties of the parametrization of the first chapter
(1.43) which uses the complex field η(~r, τ). However, the description of the BKT phe-
nomenology can be achieved in a simpler way, including in (B.1) a vortical phase field
θv(~r, τ) which takes into account the topological defects of the phase field θ(~r, τ), namely

ψ(~r, τ) =
√
ρ0 + δρ(~r, τ) ei(θ(~r,τ)+θv(~r,τ)) (B.15)

We expect that this parametrization can be used to correctly characterize the superfluid
density of two-dimensional systems outside the low-temperature regime.
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