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ABSTRACT

We investigate the ground-state properties of N bosons with attractive zero-range interactions characterized by the scattering length a> 0
and confined to the surface of a sphere of radius R. We present the analytic solution of the problem for N¼ 2, mean-field analysis for
N ! 1, and exact diffusion Monte Carlo results for intermediate N. For finite N, we observe a smooth crossover from the uniform state in
the limit a=R � 1 (weak attraction) to a localized state at small a/R (strong attraction). With increasing N, this crossover narrows down to a
discontinuous transition from the uniform state to a soliton of size � R=

ffiffiffiffi
N

p
. The two states are separated by an energy barrier, tunneling

under which is exponentially suppressed at large N. The system behavior is marked by a peculiar competition between space-curvature effects
and beyond-mean-field terms, both breaking the scaling invariance of a two-dimensional mean-field theory.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1116/5.0190767

I. INTRODUCTION

In two dimensions, N bosonic atoms with attractive point-like
interactions form bound states with very peculiar properties.
Addressing this problem by using the mean-field (MF) density func-
tional theory characterized by the coupling constant g and normaliza-
tion N leads to a solution called the Townes soliton, first studied in
nonlinear optics1 and recently observed in cold-atom experiments.2,3

This state exists only for a specific value of g ¼ gc ¼ �4p�h2

=ðmN ln rÞ, with r¼ 8.567; a stronger (weaker) attraction yields a col-
lapsing (expanding) state.1 For g¼ gc, the shape of the soliton is
defined only up to an arbitrary scaling factor, and the total MF energy
vanishes independent of the soliton size.4–7

Hammer and Son8 have argued that the two-dimensional cou-
pling constant depends logarithmically on the typical length, which
breaks the MF degeneracy and fixes a specific soliton size. They predict
that in the limit of large N, the soliton shrinks by

ffiffi
r

p ¼ 2:927 every
time one adds another atom, while the energy BN scales as
BN=B2 / rN . Here, B2 ¼ �4�h2e�2c=ðma2Þ is the dimer energy, and c
is the Euler constant. These predictions complement the exact few-
body numerics performed over a few decades for N � 4.9–14 Bazak
and Petrov15 have calculated BN for N up to 26.

In this paper, we consider the problem of N bosons confined on a
spherical surface and interacting via zero-range attraction. In the MF
approximation on a flat surface, there is a critical coupling constant gc,
which separates the collapsed (g < gc) and uniform (g > gc) ground
states. However, the curved geometry breaks the MF scaling invariance.
As a result, the uniform state remains metastable in a finite interval
gd < g < gc, where the uniform and collapsed states are separated by an
energy barrier. These are characteristics of a first-order phase transition,
the system size taken as the order parameter and the point g ¼ gd
¼ �2�h2p=ðmNÞ being the spinodal on the uniform phase side. Here,
the barrier and the frequency of the lowest (dipole) excitation of the uni-
form condensate vanish. These results are obtained in theN ! 1 limit,
for which the classical Gross–Pitaevskii description is exact. However,
due to the singular behavior of the collapsed state and the fact that it does
not constitute a good starting point for a 1=N � 1 expansion, the prob-
lem becomes essentially quantum as soon as one passes from N ¼ 1 to
finite N. We argue that in this case the discontinuous gas-collapse transi-
tion turns into an avoided crossing between the uniform state and the
Townes soliton of size�R= ffiffiffiffi

N
p

, the tunneling between these states being
exponentially suppressed at large N. To confirm these predictions, we
solve the two-body problem analytically, perturbatively analyze the gas
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and the soliton solutions, and perform diffusion Monte Carlo (DMC)
and variational Monte Carlo (VMC) analysis up toN¼ 128.

Our results indicate that the change from the smooth crossover
to discontinuous transition (for all practical purposes) happens
approximately at N � 10, which is quantitatively large. We attribute
this effect to the relatively weak breaking of the scaling invariance,
which results in a quantitatively low energy barrier between the phases.
This means that linear superpositions of the uniform and soliton states
and macroscopic tunneling dynamics could be observable in this sys-
tem for rather large atom numbers 10�N� 20.

Note that the uniform-to-soliton transition for bosons on a
sphere is very different from what happens with their one-dimensional
counterpart. Indeed, for attractive one-dimensional bosons on a ring,
this transition is continuous in both infinite-N and finite-N cases.16,17

Our study is inspired by the growing experimental interest in
shell-shaped bosonic gases18–20 and by the goal of producing low-
dimensional atomic devices whose curved geometry acts as a tunable
degree of freedom for quantum simulation.21,22

II. MEAN-FIELD ANALYSIS IN THE LARGE-N LIMIT

We start our discussion with the MF analysis. Setting �h ¼ m
¼ R ¼ 1, the Hamiltonian of the system reads

Ĥ ¼ 1
2

ð
dX ŵ

†

XL̂
2
ŵX þ gŵ

†

Xŵ
†

XŵXŵX

� �
; (1)

where ŵ
†

X is the operator creating a boson at position X ¼ ðh;uÞ on
the sphere, g is the coupling constant, and L̂

2 ¼ �½@2
h þ cot h @h

þð1= sin2hÞ@2
u�. To regularize the local interaction term in Eq. (1), we

use a cutoff for the interaction at an angular momentum lc � 1
(equivalent to the momentum cutoff at j ¼ lc). The coupling constant
is then taken as

g ¼ 4p= ln ðjB2j=j2Þ ¼ 2p= ln 2e�c=ðjaÞ½ �: (2)

On the MF level, we approximate ŵ
†

X ¼ ŵX ¼ UðXÞ and mini-
mize Eq. (1) with the normalization constraint

Ð
dXjUðXÞj2 ¼ N . In

this manner, if we also assume the cylindrical symmetry (no depen-
dence on the azimuthal angle u), we arrive at the Gross–Pitaevskii
equation

� 1
2
ð@2

h þ cot h @hÞ þ gjUðhÞj2 � l

� �
UðhÞ ¼ 0: (3)

The first obvious solution of Eq. (3) is the uniform condensate
U ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N=ð4pÞp
corresponding to the energy EN ¼ gN2=ð8pÞ. The

spectrum of the Bogoliubov modes in this case reads
el;m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðl þ 1Þ½lðl þ 1Þ þ gN=p�p
=2.23,24 The uniform solution is

thus stable with respect to small amplitude modulations for g larger
than gd ¼ �2p=N . Just below this point, the lowest-lying dipole mode
(l¼ 1) becomes unstable. On the other hand, since gd< gc, in the inter-
val gd < g < gc, the uniform state can only be metastable. Indeed, one
can consider the Townes soliton solution with the angular width dh
and show that its variational energy diverges as �ðg � gcÞ=dh2 in the
asymptotic limit dh ! 0.

The conclusion that the ground state is, respectively, the collapsed
state for g < gc and the uniform (gas) state for g > gc, is confirmed by
our numerical analysis of Eq. (3) based on imaginary-time propagation.
In practice, we see the collapsed state as a solution localized on a few
sites of our spatial grid. This solution is nonuniversal since its size is
determined by the finite grid spacing, and it shrinks to a delta-function

distribution when increasing the density of the mesh. The imaginary-
time propagation method does not predict other nonuniform solutions.
On the other hand, by using a shooting method, which can in principle
also describe maxima or saddle points of the energy functional, we do
observe a universal (independent of the grid) nonuniform nodeless solu-
tion in the interval gd < g < gc. We identify it as a saddle point separat-
ing the uniform state from the collapsed one. Its energy is always larger
than the energy of the uniform state. The maximal energy barrier
DEmax � 0:0336N is attained at g¼ gc. The gas–soliton transition at gc
is thus discontinuous. The barrier decreases as g approaches gd and dis-
appears completely at gd, which we identify as the spinodal point,
consistent with the Bogoliubov analysis. We should note that the gas–
soliton transition breaks the rotational symmetry on a sphere in the
same manner as it breaks the translational symmetry in the flat case,
and Eq. (3) explicitly takes this symmetry breaking into account.

The MF (or classical) Gross–Pitaevskii equation is the leading-
order description of a weakly interacting Bose condensate. It holds
when the number of atoms per healing volume is large (see, for
instance, Ref. 25). In two dimensions, the healing volume scales as
�1=jlj � 1=ðjgjjUj2Þ and, therefore, it contains � 1=jgj atoms. The
MF theory is thus valid when jgj � 1. In our case, this inequality is
equivalent to N � 1, since we are interested in the region close to
gc ¼ �4p=ðN ln rÞ ¼ �1:862p=N .26 A conceptual problem when
going from N ¼ 1 to finite N is caused by the singular MF description
of the soliton state. Its size vanishes, and the binding energy diverges
for g < gc, which is not a good starting point for a perturbation theory.
This difficulty is resolved by the beyond-MF analysis of Hammer and
Son8 who argue that the soliton has a finite size proportional to a
(although with a prefactor exponentially small for large N) and finite
energy / 1=a2. Compared to the energy of the uniform state, propor-
tional to g, the soliton energy varies exponentially fast, / 1=a2 / e4p=g .
We thus conjecture that for large but finite N the gas–soliton transition
is a crossing of these two states. Although not directly applicable to
describe the crossing, the MF theory allows us to make two important
statements. First, the MF description suggests that the barrier separating
the two phases grows linearly with N, the crossing narrows down expo-
nentially withN. Second, the MF results also suggest that for sufficiently
large N the soliton at the crossing is small and is only weakly influenced
by the local curvature. In the following Secs. III and IV, we will use the
inequality N � 1 to perturbatively describe, respectively, the uniform
solution and the soliton solution. The transition point can then be
located by comparing the corresponding energies. In Sec. VI, we will
present our numerical results obtained for finite N.

III. RENORMALIZATION OF THE INTERACTION
AND THE TWO-BODY PROBLEM

In contrast to the soliton state, the uniform solution profits from
a well-behaved MF description. Therefore, the MF formula EN
¼ gN2=ð8pÞ is sufficient for the asymptotic large-N analysis.
Nevertheless, we would like to renormalize g and express it in a cutoff
independent form. One way of performing this task is to note that the
energy of a Bose gas in the weakly interacting limit is the interaction
energy shift for a single pair multiplied by the number of pairs. In this
approach, the renormalized g=ð4pÞ can be identified with the energy
E2 of a pair of atoms, which can be calculated directly from the two-
body Schr€odinger equation for the relative motion,

L̂
2
wðhÞ ¼ E2 wðhÞ: (4)
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The relative wave function wðhÞ is regular everywhere except h ! 0,
where it satisfies the Bethe–Peierls boundary condition wðhÞ
/ ln ðh=aÞ. The suitable solution is the associated Legendre function
wðhÞ / P�1=2þs½cosðp� hÞ�, and the parameter s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 þ 1=4
p

satisfies

ln ð1=aÞ ¼ W0ð1=2þ sÞ þW0ð1=2� sÞ½ �=2þ ln ðec=2Þ; (5)

whereW0 is the digamma function. Equation (5) implicitly defines the
function E2ðaÞ, which we find to smoothly connect the limits of strong
(a � 1) and weak (a � 1) interactions (see Fig. 1). In the strongly
interacting limit, we obtain the expansion E2 ¼ �4 expð�2cÞ
=a2 � 1=3þ oð1Þ, and, therefore, reproduce the flat-surface asymp-
totics E2 � B2. For discussing the weakly interacting limit a � 1, let
us introduce

gr ¼ 2p
ln ð2e�1=2=aÞ (6)

and expand Eq. (5) for small jE2j. In this manner, we obtain the series

E2 ¼ gr
4p

� gr
4p

� �3

þ oðg3r Þ: (7)

Thus, gr can be identified as the renormalized coupling constant suit-
able for describing the two-dimensional scattering in our particular
geometry. Note that the energy can be equivalently expanded either in
powers of g or in powers of gr, the corresponding series deviate from
each other at the beyond-MF level since g � gr � g2 ln j � jgj. We
also note that the second-order term in Eq. (7) vanishes because of our
choice of the constant under the logarithm in Eq. (6).

Equation (7) is the energy of two atoms calculated up to terms
/ g3 � g3r . One can also generalize it to arbitrary N by using the
standard perturbation expansion of the Hamiltonian (1) at small g.

Up to the third order, this procedure gives (see the derivation in
Appendix A, based on Ref. 27)

EN ¼ gr
4p

� gr
4p

� �3
" #

NðN � 1Þ
2

þ gr
4p

� �3

NðN � 1ÞðN � 2Þ: (8)

As expected, Eq. (8) reproduces the perturbative two-body result [Eq.
(7)] and also predicts the leading nonpairwise contribution to the
energy in the weakly interacting limit. Note that the three-body and,
more generally, other beyond-MF terms, are suppressed by at least one
additional power of g / 1=N compared to the leading two-body term
EN ¼ grN2=ð8pÞ.
IV. NEARLY FLAT SOLITON AND THE TRANSITION
POINT

Let us assume (and a posteriori verify) that for large N there is a
localized soliton solution of Eq. (1), degenerate with the uniform solu-
tion at a certain critical gr. By localized, we mean that the soliton size is
much smaller than the sphere radius. In this nearly flat limit, we can
address the problem perturbatively.

As a measure of the cloud size, it is convenient to introduce the

rms separation between pairs of atoms
ffiffiffiffiffiffiffiffi
hr2iji

q
. In the spherical geome-

try, hr2iji is calculated from the distribution of the three-dimensional
(chord) distances rij ¼ jri � rjj, where ri is the three-dimensional
coordinate corresponding to the point Xi on the sphere.

As we mention in the introduction, in the limit N ! 1, the size
of the soliton on a plane equals8ffiffiffiffiffiffiffiffi

hr2iji
q

¼ ae�Nðln rÞ=2þoðNÞ (9)

and its energy (to avoid confusion, we always denote energies on a
sphere by E and on a plane by B)

BN ¼ �a�2eN ln rþoðNÞ ¼ �eN ln rþ4p=grþoðNÞ; (10)

where the second equality in Eq. (10) follows from the definition of gr
Eq. (6). One can show that

hr2ijijBN j ¼ 0:553; (11)

which is a stronger statement than what can be obtained by simply
multiplying Eqs. (9) and (10).28 We emphasize that BN � 1=hr2iji is a
beyond-MF energy scale. It is indeed much smaller than the MF
kinetic or interaction energies, which both scale as �N=hr2iji, but have
different signs and almost cancel each other. A detailed derivation of
Eq. (11) is presented in Appendix B, where we also review some prop-
erties of flat solitons.

Passing now to the curved geometry, one can show that the
leading-order effect of the curved spherical surface on a nearly flat soli-
ton is to shift its energy by DEsphere according to

EN ¼ BN þ DEsphere ¼ BN � 0:199N: (12)

To obtain Eq. (12), we use the flat Townes soliton as the unperturbed
solution and the difference between the kinetic energy operator on a
sphere and on a plane as the perturbation (refer to Appendix C for
more details). It is important to emphasize that for the validity of Eq.
(12), the curvature shift DEsphere should be small compared to the MF
energy scale � N=hr2iji and not to the beyond-MF energy scale BN.

FIG. 1. Inverse of the energy along the crossover from the weakly attractive (large
negative x) to strongly attractive (large positive x) regimes. The cases of N¼ 2 and
N ¼ 1 are shown as the black dashed-dotted curve and the piecewise linear black
solid curve, respectively. The transition in the thermodynamic limit takes place at
x ¼ �0:171. The red, orange, pink, green, blue, and purple crosses are the Monte
Carlo results, respectively, for N ¼ 3; 4; 8; 16; 32, and 128 bosons. The dashed
curves represent the large-x asymptote Eq. (15), which takes into account the
leading-order curvature-induced energy shift for a nearly flat soliton.
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As a result, without invalidating Eq. (12), both terms on its right-hand
side can be comparable to each other. As we will now see, at the transi-
tion point, the curvature effect indeed competes with the beyond-MF
effect.

Combining the results of Sec. III on the energy of the uniform
phase and Eq. (12) for the soliton, we obtain the condition for their
crossing (valid for large N and 1=hr2iji),

grN
2=ð8pÞ þ oðNÞ ¼ BN þ DEsphere þ oðN; 1=hr2ijiÞ: (13)

Substituting Eq. (10) into Eq. (13), we find that the critical coupling
constant equals gr ¼ �4p=ðN ln rÞ þ oðN�1Þ � gc. This conclusion
just follows from the fact that at the crossing, BN given by Eq. (10) can-
not be exponentially large in N as there are no other exponentially
large terms in Eq. (13). We, thus, recover the MF result that the
transition point corresponds to gr¼ gc. Substituting this equality
into the left-hand side of Eq. (13) tells us that at the crossing
BN ¼ �N=ð2 ln rÞ þ 0:199N and, using Eq. (11), we obtain the fol-
lowing estimate for the critical soliton size:ffiffiffiffiffiffiffiffi

hr2iji
q

jcrit ¼ 4:06=
ffiffiffiffi
N

p
: (14)

In Eq. (13), we keep track of possible corrections; we include the
beyond-MF correction o(N) for the uniform phase on the left-hand
side and an estimate of higher-order beyond-MF and finite-curvature
corrections for the soliton on the right-hand side. Using Eq. (14), one
can a posteriori verify that these corrections are small.

We have thus confirmed that for large N the gas–soliton transi-
tion is a crossing of the uniform state, which occupies the whole sphere
surface and a soliton of size �1= ffiffiffiffi

N
p

. In passing, we note that in order
to observe a significant size change at the transition point the number
of atoms should be N� 16, as follows from Eq. (14). In Sec. V, we dis-
cuss what happens with the gas–soliton transition for finiteN.

V. NUMERICAL RESULTS

In Fig. 1, we show the energy obtained by solving the N-boson
problem on a sphere by means of the diffusion and variational Monte
Carlo methods, details of which will be discussed in Sec. VI. The dots
in Fig. 1 stand for the DMC results for N¼ 3 (red), N¼ 4 (orange),
N¼ 8 (pink), N¼ 16 (green), N¼ 32 (blue), and N¼ 128 (purple).
The N¼ 2 result [Eq. (5)] is plotted as the black dashed-dotted curve.

For presenting the data, we choose to plot the quantity
y ¼ ðN � 1Þ=ð8pENÞ as a function of x ¼ 1=ðgrNÞ ¼ ln ð2e�1=2=aÞ
=ð2pNÞ. With this choice of coordinates, in the weakly interacting
limit (x ! �1), the curves y(x) for different N should all tend to the
straight black solid y¼ x line, equivalent to EN ¼ grNðN � 1Þ=ð8pÞ.
We note that the convergence of the finite-N results to this line with
increasing N is not monotonic and is relatively slow, which is very well
explained by the cubic terms in Eq. (8). We do not show the corre-
sponding curves to avoid cluttering.

In the opposite strongly interacting limit (x ! þ1), our numer-
ical results agree with Eq. (12), which, in variables x and y, explicitly
reads

y ¼ �N � 1
8p

1
ðBN=B2Þ expð4pNx þ 1� 2cÞ � DEsphereðNÞ : (15)

In fact, we calculate the curvature-induced offset DEsphereðNÞ for arbi-
trary N, not only for N � 1. However, we find that DEsphereðNÞ

converges very fast to the large-N asymptote Eq. (12). For N¼ 3, we
numerically find DEsphereð3Þ ¼ 0:60ð2Þ, and the distinction is consid-
erable only for N¼ 2, where DEsphereð2Þ ¼ �1=3 (see Sec. III). The
dashed curves in Fig. 1 show Eq. (15) for N¼ 3, 4, 8, and 16 using the
ratios BN=B2 calculated in Ref. 15.

We observe that with increasing N the energy curves in Fig. 1
tend to the piecewise linear function, y¼ x (gas phase) for gr < gc and
y¼ 0 (collapsed state) for gr > gc, consistent with the MF description
of Sec. II. The transition in the limit N ! 1 is marked by the vertical
line at x ¼ �ln r=ð4pÞ ¼ �0:171 (equivalent to gr¼ gc).

Let us now discuss how the cloud size changes as we vary the
interaction strength. In Fig. 2, we show the rms separation between
atoms as a function of the scattering length a (rescaled by an N-depen-
dent coefficient). In the strongly interacting limit, we are dealing with
a localized and almost flat soliton, the size of which is proportional to
a [see Eq. (9)]. Accordingly, we fit this linear dependence and rescale
the horizontal axis to make the curves for different N collapse to a sin-
gle line. In the opposite weakly interacting limit, the distribution of
atoms on our unit sphere is uniform, and the rms size tends to

ffiffiffi
2

p
.

The way these two asymptotes are approached depends on N. We find
that for N� 10 the derivatives of the curves are monotonic (within
our precision), and for largerN, we start seeing a nonmonotonic struc-
ture, which eventually transforms into an abrupt change at a certain
critical a. Our calculations are consistent with the scenario that there is
a (narrow) crossing region where the exact ground state is a linear
superposition of the soliton state and the uniform gas state. However,
beginning with N � 20, our DMC scheme does not account for these
effects. For N¼ 32 and 128, the DMC scheme predicts the energies
and rms sizes of the two phases, but due to the importance sampling
(necessary for these large N), the system gets stuck in one of the phases
and cannot tunnel to the other. Neglecting this macroscopic tunneling,
one can say that the system undergoes a first-order phase transition
(see the discussion in Sec. VI). We find that for N¼ 32 and, particu-
larly, for N¼ 128 the rms size of the soliton at the transition point is in
quantitative agreement with Eq. (14).

FIG. 2. The rms separation versus a for different values of N as in Fig. 1 (we use
the same color code). The interatomic distance is defined as the three-dimensional
chord length. The horizontal axis is proportional to the scattering length a rescaled
by an N-dependent coefficient to make all curves tend to a unique line at small a.
The nonmonotonic behavior of the slope of the curves for N 	 16 signals the
abruptly changing size in the vicinity of the gas–soliton transition.
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VI. MONTE CARLO FOR BOSONS ON A SPHERE

To find the ground state of the N-boson problem numerically, we
employ the variational (VMC) and diffusion (DMC) Monte Carlo
methods, general details of which can be found, for instance, in Ref.
29. The standard method has to be adapted for solving the
Schr€odinger equation on a sphere. As the variational (for VMC) and
guiding (for DMC) wave function, we take the Jastrow product

W0ðX1;…;XNÞ ¼
Y
i<j

vðrijÞ: (16)

ExpressingW in terms of chord distances rij regularizes the wave func-
tion and automatically takes care of the boundary condition when two
atoms are on the opposite poles of the sphere (hij ¼ p). For the
Jastrow factor, we choose vðrÞ ¼ K0ð2e�cr=aÞe�r=b. With this choice
W0 satisfies the Bethe–Peierls condition at short interparticle distances
(hij � rij ! 0) as in the two-body case (see Sec. III), and we control
the system size by tuning the variational parameter b.

In projection Monte Carlo methods, a first-order phase transition
can be captured by imposing appropriate symmetry on the guiding
wave functions. Probably, the most famous example of a zero-
temperature quantum phase transition is that of the liquid–solid phase
transition in 4He for which Monte Carlo calculations provide very
good agreement with experiments.30 The distinguishing feature
between the two phases is the order parameter, with the liquid phase
having translational invariance, which is instead broken in the solid
phase, where particles get localized near the lattice sites. On the varia-
tional level, close to the phase transition point, the variational energy
has two minima as a function of the localization size. One corresponds
to a solid (localization size smaller than the mean interparticle dis-
tance), while the other to a liquid (infinite localization size). The varia-
tional energy increases by going away from the minimum, so that each
phase is stable against a weak perturbation, the phase with the lower
energy being the ground state and the one with the higher energy being
metastable. In contrast, in a second-order phase transition, only a sin-
gle variational minimum exists, so that only one phase is stable at a
time.

In our case, the variational parameter b describes the degree of
localization of the state and allows one to discriminate between the
two phases. For a sufficiently large number of particles (N� 20),
indeed, we observe the double-minimum structure, characteristic of a
first-order phase transition, see Fig. 3. The two minima are character-
ized by different values of b and correspond, respectively, to the gas
phase and to the localized soliton phase. The double minimum is
observed in the variation energy in a narrow region of x and the critical
x (when the two minima are degenerate) approaches the MF predic-
tion x ! �0:171 as the number of particles is increased.

DMC method is based on solving the Schr€odinger equation in
imaginary time, and it allows one to find the ground-state properties
in the limit of long projection time. The convergence is significantly
improved by using a guiding wave function (16) with values of optimal
b obtained by minimizing the variational energy. The procedure is in
principle exact and is independent of the choice of the guiding func-
tion, as long as all relevant configurations are allowed. We find that for
N¼ 32 and 128, [Eq. (16)], with the variationally optimal values of b,
well describes both the gas and soliton solutions, and for these particle
numbers, we do profit from importance sampling. However, since in
the many-body configurational space, the “gas” guiding function to a

large extent excludes the “soliton” region and vice versa, in practice,
the diffusion process cannot account for the tunneling between the
two phases. Quantitative description of the tunneling process in
this case is an interesting future project going beyond the scope of this
paper.

To mention a few technical details of our DMC scheme specific
to the spherical geometry, we find it convenient to work with particles’
three-dimensional coordinates ri rather than with their polar angles
and azimuths. In particular, the chord distance evaluation in this case
is much more straightforward. The drift for particle i is governed by
the gradient of W0 with respect to ri projected to the sphere surface.
For the Jastrow product (16), this task reduces to calculating the pro-
jected gradient of v,

rrivðjri � rjjÞ ¼ v0ðrijÞ ðrirjÞri � rj
rij

: (17)

Neglecting finite time step corrections, we realize the diffusion and
drift in a three-dimensional manner (as if the atoms were not con-
fined), then projecting back to the sphere surface. The local energy can
be expressed in terms of derivatives of v by using

L̂
2
rivðjri � rjjÞ ¼ � 1þ rirj

2
v00ðrijÞ þ rij

4
� rirj

rij

� �
v0ðrijÞ: (18)

Finally, we mention that another Monte Carlo method, path inte-
gral Monte Carlo, has recently been employed to study supersolidity of
bosons on a sphere with soft-core and dipolar interactions at finite
temperature.31

VII. CONCLUSIONS

In this paper, we address the problem of N bosons on a spherical
surface interacting via attractive zero-range potential and investigate
how this system crosses over from the uniform gas state to the

FIG. 3. The variational energy per particle EVMC=N as a function of the localization
parameter b for N¼ 32 and three close values of x near the transition: for weak
attraction (upper curve), there is a single minimum at large b � 1 physically corre-
sponding to a uniform gas state, for strong attraction (bottom curve), the minimum
is located at significantly smaller b and describes a localized state, the middle curve
shows the double minimum structure, typical for a first-order phase transition. The
left and right insets show snapshots of particles’ coordinates in VMC simulation in
the minimum of the lower curve (marked by triangle, b¼ 14) and in the minimum of
the upper curve (square, b¼ 44), respectively.
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localized soliton state as one increases the attraction. Our main finding
is that for sufficiently large N, we are essentially dealing with a first-
order transition or, more precisely, a narrow avoided crossing between
two states, which are significantly different in size and separated from
each other by an energy barrier. On the other hand, for low values of
N, the energy and rms size are smooth functions of the scattering
length.

Our exact Monte Carlo calculations show that the change
between these two regimes occurs when N is roughly between 10 and
20. These relatively high values may be explained by a quantitatively
weak geometry-induced breaking of the two-dimensional MF scaling
invariance and, therefore, by a numerically small barrier. Indeed, in
the MF approximation at g¼ gc, the barrier equals DEmax ¼ 0:0336N ,
and we can compare it with the dipole mode frequency in the uniform
phase e1;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gc=gd

p ¼ 0:262. Here, we have in mind that the
dipole mode marks the initial “direction” for the system to tunnel
toward the soliton side.32 We see that for large N, the barrier is indeed
much higher than the dipole frequency, the tunneling is suppressed,
and the gas–soliton transition looks discontinuous (from the practical
viewpoint). By contrast, when DEmax � e1;1, the role of the barrier is
not very important, and the crossover is smooth. Accordingly, the con-
dition DEmax ¼ e1;1 leads to a characteristic atom number N � 8
where the crossover physics changes. This estimate is consistent with
our Monte Carlo results.

We mention that the crossover scenario on a sphere is different
from the previously solved model of attractive one-dimensional bosons
on a ring where the gas–soliton transition is always continuous (no
barrier), independent of N.16,17 In perspective, it would therefore be
interesting to study other geometries where the confinement can be
used as a knob for controlling the crossover type and for elucidating
the relative role of the space curvature, finite size, manifold topology,
MF, and beyond-MF terms. Being able to control the barrier and N
gives a way to prepare and probe superpositions of different macro-
scopic or mesoscopic quantum states.
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APPENDIX A: DERIVATION OF EQ. (8)

A complementary manner of renormalizing the interaction is
to expand the N-body energy in powers of jgj � 1 starting from the
kinetic energy term in Eq. (1) as the unperturbed Hamiltonian. This
standard perturbation theory works for finite N and also predicts
the nonpairwise energy contribution. For N bosons on a unit sphere,
we obtain the ground-state energy up to terms of order g3 in the
form (see Ref. 27)
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EN ¼ gð1Þ þ gð2Þ þ gð3Þ
h iNðN � 1Þ

2
þ g3

NðN � 1ÞðN � 2Þ
6

; (A1)

where

gð1Þ ¼ V00
00 ¼ g

4p
; (A2)

gð2Þ ¼ �
X
�

jV0�
0� j2
2n�

¼ g
4p

� �2

ln
e1�2c

l2c
þ oð1Þ

" #
; (A3)

gð3Þ ¼
X
�

X
�0

V0� 0
0�0 V

� 0�
�0� V

�0
�0

4n�n�0
� V00

00

X
�

jV0�
0� j2
4n2�

¼ g
4p

� �3

ln2
e1�2c

l2c
� 1þ oð1Þ

" #
; (A4)

and

g3 ¼ 6
X
�

V0�
0� V

0�
�0V

�0
�0

4n2�
¼ 6

g
4p

� �3

1þ oð1Þ½ �: (A5)

In Eqs. (A3)–(A5), � ¼ fl;mg; �0 ¼ fl0;m0g; � ¼ fl;�mg;
� 0 ¼ fl0;�m0g; P� ¼

Plc
l¼1

Pl
m¼�l , and n� ¼ lðl þ 1Þ=2, where

l and m correspond to the angular momentum and its projection
for spherical harmonics. The quantities

Vfg
lm ¼ g

ð
dXw


fðXÞw

lðXÞwgðXÞwmðXÞ (A6)

are the interaction matrix elements for two-body transitions from
single-particle states l and f to � and g, and the corresponding wave
functions are spherical harmonics. The last terms in Eqs. (A3)–(A5)
are the final results obtained by summing over � and �0. The summa-
tion is facilitated by the fact that V0�

0� ¼ V0�
�0 ¼ V�0

�0 ¼ g=ð4pÞ. The
more general matrix element V� 0�

�0� in the first sum in Eq. (A4) is not
necessary to calculate explicitly. The result in this case is obtained by
summing over the projections m and m0 and using the addition theo-
rem for spherical harmonics. Finally, to arrive at Eq. (8) of the main
text, we rewrite the expansion (A1) in powers of gr by using the rela-
tion 1=g ¼ 1=gr þ ln ðe�cþ1=2=lcÞ =ð2pÞ, which follows from Eqs. (2)
and (6). Note that the cutoff dependence drops out.

APPENDIX B: DERIVATION OF EQ. (11)

From Eqs. (9) and (10) obtained by Hammer and Son,8 one
can conclude that the product jBN jhr2iji ¼ exp½oðNÞ�. This does not
exclude that this product may be a power of N since the term o(N)
can, in principle, be logarithmic. Here, by developing the beyond-
MF description of the flat soliton, we show that its size and energy
are related by Eq. (11), i.e., the product jBN jhr2iji tends to a universal
constant.

The planar version of the Hamiltonian Eq. (1) reads

Ĥplane ¼ 1
2

ð
d2q �ŵ

†

qr2
qŵq þ gŵ

†

qŵ
†

qŵqŵq

� �
; (B1)

and the corresponding mean-field Gross–Pitaevskii energy func-
tional is

BMFðWÞ ¼ 1
2

ð
d2q jrqWðqÞj2 þ gjWðqÞj4

h i
: (B2)

Minimizing Eq. (B2) with the normalization constraintÐ
d2qjWðqÞj2 ¼ N leads to stationary solutions only for g ¼ gc

¼ �4p=ðN ln rÞ.1 The corresponding wave functions form a family
of self-similar states parametrized by the size r,

WrðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N ln r
8pr2

r
f ðq=rÞ; (B3)

where f ðqÞ is a nodeless solution of

f 00ðqÞ þ f 0ðqÞ=q� f ðqÞ þ f 3ðqÞ ¼ 0: (B4)

The function f ðqÞ is found numerically, it has a bell shape with
exponentially decaying large-q asymptote.1,8 The normalization
integral, the kinetic energy, and the interaction energy correspond-
ing to the solution Wr can be found from the identitiesð

dqqf 2ðqÞ ¼
ð
dqq½ f 0ðqÞ�2 ¼ 1

2

ð
dqqf 4ðqÞ ¼ 4

ln r
: (B5)

The rms separation of atoms in the Townes soliton is related to the
size parameter r by

ffiffiffiffiffiffiffiffi
hr2iji

q
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ð
dqq3f 2ðqÞ=

ð
dqqf 2ðqÞ

s
¼ 1:541r; (B6)

where we use ð
dqq3f 2ðqÞ ¼ 2:211: (B7)

For future reference, we also provide the integralð
dqq3½ f 0ðqÞ�2 ¼ 2:968: (B8)

One can check that if g¼ gc, the total energy BMFðWrÞ ¼ 0 for
any r. This result, in a more general form, follows from the statio-
narity condition.4 Although the kinetic energy and the interaction
energy in Eq. (B2) cancel each other, they are separately of order
gN2=r2 � N=r2, defining the MF energy scale. The leading
beyond-MF contribution, which we denote BBMF, is smaller by the
factor jgj � 1=N � 1. The shape of W is fixed by the dominant MF
forces. The beyond-MF term is too weak to induce significant
changes in the shape, but it breaks the degeneracy associated with
the parameter r. The optimal r ¼ rN is determined by minimizing
the energy functional including the beyond-MF term BBMFðWrÞ.
Calculating this quantity is a complicated task, which requires diag-
onalizing the Bogoliubov Hamiltonian for fluctuations around the
stationary condensate solution Wr. In this manner, one should, in

principle, obtain the size rN (and, therefore,
ffiffiffiffiffiffiffiffi
hr2iji

q
) and the energy

BN up to the preexponential factors [we are speaking about the
terms o(N) in Eqs. (9) and (10)], eventually arriving at Eq. (11). We
will now show that determining the product BNr2N does not require
these complicated calculations; it is sufficient to know the scaling
properties of BBMFðWrÞ.

In contrast to Eq. (B2), the Hamiltonian Eq. (B1) is not scaling
invariant because of the (implicit) cutoff j in the interaction. We
can nevertheless use the following scaling property: a scaling trans-
formation (change of coordinates by a factor K) of a many-body
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eigenstate of the Hamiltonian Eq. (B1) corresponding to a cutoff j
gives an eigenstate of the same Hamiltonian but with 1=j rescaled
by K. This rescaling of the cutoff momentum is equivalent to rescal-
ing the scattering length a by K [see Eq. (2)]. The corresponding
energy gets rescaled by 1=K2. This means that the beyond-MF term
BBMFðWr; jÞ calculated with the cutoff j for the condensate wave
function Wr and the analogous quantity BBMFðWr0 ; j0Þ calculated
with the cutoff j0 ¼ jr=r0 for Wr0 are related by

BBMFðWr; jÞ ¼ BBMFðWr0 ; j
0Þðr0=rÞ2: (B9)

Let us now assume that we know BBMFðWr0 ; jÞ for a certain refer-
ence size r0, and we want to calculate BBMFðWr; jÞ, i.e., we want to
know how the beyond-MF term scales with r for a given fixed j.
In view of Eq. (B9), it is sufficient to calculate BBMFðWr0 ; j0Þ, which
we write as BBMFðWr0 ; j0Þ ¼ BBMFðWr0 ; jÞ þ DB. Here, DB
¼ BBMFðWr0 ; j0Þ � BBMFðWr0 ; jÞ is the difference between the
beyond-MF terms calculated for the same condensate wave function
Wr0 but different cutoff momenta. This is a local term since it takes
into account excitations with de Broglie wave lengths between 1=j
and 1=j0, both assumed to be much smaller than the soliton size r0.
When calculating DB, one can thus use the Bogoliubov theory for
homogeneous condensates (and then average over the density) or
just simply note that changing j ! j0 corresponds to a renormali-
zation of the coupling constant given by the second-order Born
integral. The result is [by o(1), we mean terms � 1 in the asymp-
totic limit jgj � 1=N ! 0]

DB ¼ �
ð
d2q

jWr0 ðqÞj4
2

ðj0
j

2pkdk

ð2pÞ2
g2

k2
þ oð1Þ

¼ �N2g2 ln r

ð4pr0Þ2 ln
j0

j
þ oð1Þ ¼ �N2g2 ln r

ð4pr0Þ2 ln
r
r0

þ oð1Þ: (B10)

Using the fact that BMFðWrÞ ¼ ðg � gcÞ
Ð
d2qjWrðqÞj4=2 and

Eqs. (B9) and (B10), we can write the energy of a soliton of size r
up to the leading beyond-MF correction as

BðWrÞ ¼ N2ðg � gcÞ ln r
8pr2

þ BBMFðWr0 ; jÞ r0

r

� �2

� N2g2 ln r

ð4prÞ2 ln
r
r0
:

(B11)

Minimizing Eq. (B11) with respect to r leads to the result

BNr
2
N ¼ �N2g2 ln r

32p2
: (B12)

The point is that BN and rN separately require calculating BBMF,
whereas the product Eq. (B12) does not. Our theory implies that
jg � gcj � jgj, so that the first term on the right-hand side of Eq.
(B11) is consistent with the beyond-MF energy scale. Not to exceed
the accuracy, we should then also replace g by gc in the last term in
Eq. (B11) as well as in Eq. (B12). Equation (11) then follows from
Eqs. (B12) and (B6).

To complete the proof of Eq. (11), we still have one technical
point to address. Even when a is fixed, we can choose different g to
model the interaction, provided that we tune j in accordance with
Eq. (2). This freedom is limited by two constraints: jg � gcj � jgj,
discussed above, and j � 1=rN . The second constraint allows us to
neglect finite-range effects and guarantees that our theory can be

used to describe zero-range interactions. In fact, for the accuracy
claimed in Eq. (B10), we need j to exceed 1=rN by at least one
power of N. The obvious choice g¼ gc satisfies the first constraint. It
corresponds to jc ¼ 2a�1 exp½Nðln rÞ=2� c� ¼ r�1

N exp½oðNÞ� as
follows from Eqs. (2), (9), and (B6). Since o(N) is not necessarily
asymptotically large, jc may not be larger than r�1

N , and we cannot
ensure that the interaction is sufficiently short ranged. Let us then
choose j ¼ r�1

N N and show that the corresponding g satisfies
jg � gcj � jgj. To this end, we write

g ¼ 2p
ln ð2e�c=jcaÞ þ ln ðjc=jÞ � gc � g2c

2p
ln

jc
j

(B13)

and note that jc=j ¼ exp½oðNÞ�, which means jg � gcj ¼ g2oðNÞ
� jgj as we need. This point completes the proof of Eq. (11).

APPENDIX C: DERIVATION OF EQ. (12)

Let us find how the energy of a nearly flat soliton is shifted
under the influence of the sphere. The idea is to perturbatively cal-
culate the curvature-induced MF energy shift assuming that r � 1
and using the flat-soliton wave function Eq. (B3) as the unperturbed
solution. Consider a cylindrically symmetric function WðqÞ where
q ¼ 2 sinðh=2Þ is the chord distance between the soliton center,
assumed to be at the north pole, and the point on the sphere with
polar angle h. In this case, we have dX ¼ 2p sin hdh ¼ 2pqdq, and
the operator L̂

2
defined after Eq. (1) can be written as

L̂
2 ¼ � @2

@q2
� 1
q
@

@q
þ q2

4
@2

@q2
þ 3
q
@

@q

� �
: (C1)

The MF energy functional on the sphere can thus formally be writ-
ten as

EMFðWÞ ¼ BMFðWÞ þ
ð
d2q

q2

8
W
ðqÞ @2

@q2
þ 3
q
@

@q

� �
WðqÞ; (C2)

where BMFðWÞ is given by Eq. (B2), and the domain of q is
restricted to be between 0 and 2 with a proper boundary condition
for W at q¼ 2. However, the corresponding finite-size corrections
are exponentially small for r � 1, and we can extend the domain
up to q ¼ 1. The leading-order curvature-induced energy shift is
thus triggered by the integral in Eq. (C2) and can easily be calcu-
lated for W ¼ Wr. Using Eq. (B8), we obtain

DEsphereðWrÞ ¼ �N ln r
32

ð
f 0ðqÞ	 
2

q3dq ¼ �0:199N; (C3)

which is Eq. (12). Although Eq. (C3) is formally a MF correction, it
is by a factor of r2 weaker than the MF energy scale N=r2. It
becomes comparable to the beyond-MF scale if r2 � 1=N , which is
exactly what happens at the transition point, as we mention in the
main text. Note that Eq. (C3) is independent of r, and thus it only
shifts the energy, the optimal r still being determined by the
beyond-MF energy term Eq. (B11) derived in the flat-surface
approximation.

REFERENCES
1R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).

AVS Quantum Science ARTICLE pubs.aip.org/aip/aqs

AVS Quantum Sci. 6, 023201 (2024); doi: 10.1116/5.0190767 6, 023201-8

Published under an exclusive license by AIP Publishing

 13 M
ay 2024 09:40:41

https://doi.org/10.1103/PhysRevLett.13.479
pubs.aip.org/aip/aqs


2B. Bakkali-Hassani, C. Maury, Y.-Q. Zou, �E. Le Cerf, R. Saint-Jalm, P. C. M.
Castilho, S. Nascimbene, J. Dalibard, and J. Beugnon, Phys. Rev. Lett. 127,
023603 (2021).

3C.-A. Chen and C.-L. Hung, Phys. Rev. Lett. 127, 023604 (2021).
4S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, Izv. Vyssh. Uchebn. Zaved.,
Radiofiz. 14, 1353 (1971).

5L. P. Pitaevskii, Phys. Lett. A 221, 14 (1996).
6L. P. Pitaevskii and A. Rosch, Phys. Rev. A 55, R853 (1997).
7B. Bakkali-Hassani and J. Dalibard, “Townes soliton and beyond: Non-miscible
Bose mixtures in 2D,” in Proceedings of the International School of Physics
“Enrico Fermi,” Course 211 - Quantum Mixtures with Ultra-Cold Atoms, 2022.

8H.-W. Hammer and D. T. Son, Phys. Rev. Lett. 93, 250408 (2004).
9L. W. Bruch and J. A. Tjon, Phys. Rev. A 19, 425 (1979).

10S. K. Adhikari, A. Delfino, T. Frederico, I. D. Goldman, and L. Tomio, Phys.
Rev. A 37, 3666 (1988).

11E. Nielsen, D. V. Fedorov, and A. S. Jensen, Phys. Rev. A 56, 3287 (1997).
12E. Nielsen, D. V. Fedorov, and A. S. Jensen, Few-Body Syst. 27, 15 (1999).
13I. V. Brodsky, M. Y. Kagan, A. V. Klaptsov, R. Combescot, and X. Leyronas,
Phys. Rev. A 73, 032724 (2006).

14O. I. Kartavtsev and A. V. Malykh, Phys. Rev. A 74, 042506 (2006).
15B. Bazak and D. S. Petrov, New J. Phys. 20, 023045 (2018).
16L. D. Carr, C. W. Clark, and W. P. Reinhardt, Phys. Rev. A 62, 063611 (2000).
17R. Kanamoto, H. Saito, and M. Ueda, Phys. Rev. A 67, 013608 (2003).
18R. A. Carollo, D. C. Aveline, B. Rhyno, S. Vishveshwara, C. Lannert, J. D.
Murphree, E. R. Elliott, J. R. Williams, R. J. Thompson et al., Nature 606, 281
(2022).

19F. Jia, Z. Huang, L. Qiu, R. Zhou, Y. Yan, and D. Wang, Phys. Rev. Lett. 129,
243402 (2022).

20Y. Guo, E. Mercado Gutierrez, D. Rey, T. Badr, A. Perrin, L. Longchambon,
V. S. Bagnato, H. Perrin, and R. Dubessy, New J. Phys. 24, 093040 (2022).

21A. Tononi and L. Salasnich, Nat. Rev. Phys. 5, 398 (2023).
22L. Amico, D. Anderson, M. Boshier, J.-P. Brantut, L.-C. Kwek, A. Minguzzi,
and W. von Klitzing, Rev. Mod. Phys. 94, 041001 (2022).

23S. Prestipino and P. V. Giaquinta, Phys. Rev. A 99, 063619 (2019).
24A. Tononi and L. Salasnich, Phys. Rev. Lett. 123, 160403 (2019).
25C. Mora and Y. Castin, Phys. Rev. A 67, 053615 (2003).
26We note that small g � �1=N implies exponentially large a. This peculiarity of
the two-dimensional scattering is usually not a problem since most interaction-
related physical observables depend on ln a. Exponentially large a is thus not
unusual. For instance, for low-energy quasi-two-dimensional collisions, the
effective two-dimensional scattering length a / l0 expð�

ffiffiffiffiffiffiffiffi
p=2

p
l0=a3DÞ is expo-

nentially large when the ratio of the three-dimensional scattering length
a3D < 0 to the confinement oscillator length l0 is (moderately) small, see D. S.
Petrov and G. V. Shlyapnikov, Phys. Rev. A 64, 012706 (2001).

27A. Pricoupenko and D. S. Petrov, Phys. Rev. A 103, 033326 (2021).
28References 8 and 15 implicitly assume without verification that the terms o(N)
in Eqs. (9) and (10) are constants. However, the behavior oðNÞ ¼ lnN cannot
be excluded, making Eq. (11) nontrivial. We thank one of the reviewers for
raising the concern.

29J. Boronat and J. Casulleras, Phys. Rev. B 49, 8920 (1994).
30P. A. Whitlock, D. M. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B
19, 5598 (1979).

31M. Ciardi, F. Cinti, G. Pellicane, and S. Prestipino, Phys. Rev. Lett. 132, 026001
(2024).

32A possible way of solving this tunneling problem is by using the instanton
approach, see J. A. Freire and D. P. Arovas, Phys. Rev. A 59, 1461 (1999).

AVS Quantum Science ARTICLE pubs.aip.org/aip/aqs

AVS Quantum Sci. 6, 023201 (2024); doi: 10.1116/5.0190767 6, 023201-9

Published under an exclusive license by AIP Publishing

 13 M
ay 2024 09:40:41

https://doi.org/10.1103/PhysRevLett.127.023603
https://doi.org/10.1103/PhysRevLett.127.023604
https://doi.org/10.1016/0375-9601(96)00538-5
https://doi.org/10.1103/PhysRevA.55.R853
https://doi.org/10.1103/PhysRevLett.93.250408
https://doi.org/10.1103/PhysRevA.19.425
https://doi.org/10.1103/PhysRevA.37.3666
https://doi.org/10.1103/PhysRevA.37.3666
https://doi.org/10.1103/PhysRevA.56.3287
https://doi.org/10.1007/s006010050121
https://doi.org/10.1103/PhysRevA.73.032724
https://doi.org/10.1103/PhysRevA.74.042506
https://doi.org/10.1088/1367-2630/aaa64f
https://doi.org/10.1103/PhysRevA.62.063611
https://doi.org/10.1103/PhysRevA.67.013608
https://doi.org/10.1038/s41586-022-04639-8
https://doi.org/10.1103/PhysRevLett.129.243402
https://doi.org/10.1088/1367-2630/ac919f
https://doi.org/10.1038/s42254-023-00591-2
https://doi.org/10.1103/RevModPhys.94.041001
https://doi.org/10.1103/PhysRevA.99.063619
https://doi.org/10.1103/PhysRevLett.123.160403
https://doi.org/10.1103/PhysRevA.67.053615
https://doi.org/10.1103/PhysRevA.64.012706
https://doi.org/10.1103/PhysRevA.103.033326
https://doi.org/10.1103/PhysRevB.49.8920
https://doi.org/10.1103/PhysRevB.19.5598
https://doi.org/10.1103/PhysRevLett.132.026001
https://doi.org/10.1103/PhysRevA.59.1461
pubs.aip.org/aip/aqs

