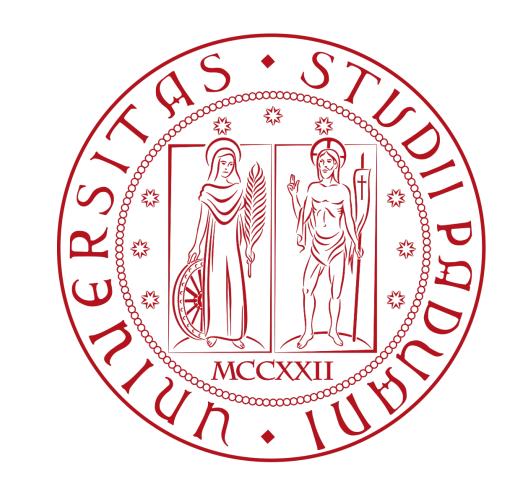
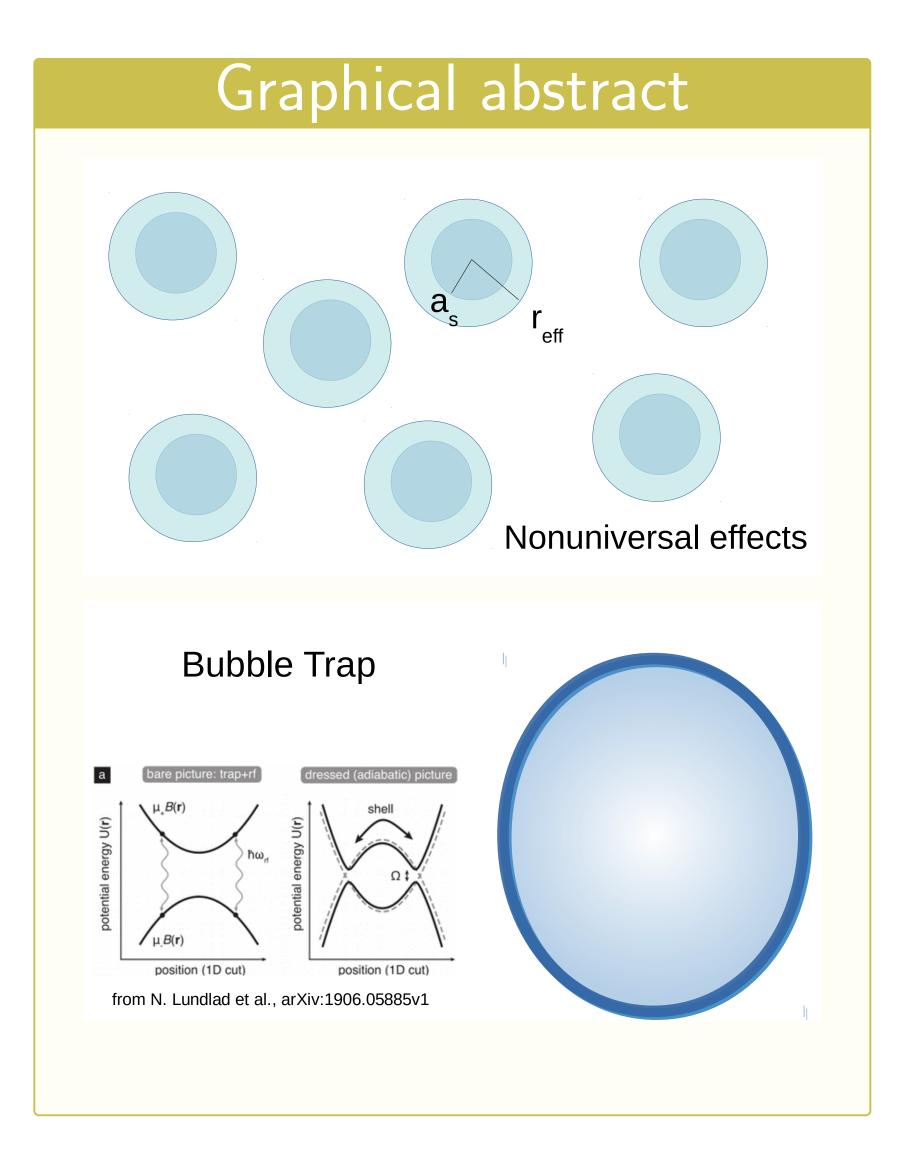


Condensation in 2D: from nonuniversal effects to bubble traps

Andrea Tononi, Alberto Cappellaro, Luca Salasnich

Dipartimento di Fisica e Astronomia "Galileo Galilei" and CNISM, Universitá di Padova, Via Marzolo 8, I-35131 Padova, Italy





Functional integration

We consider a uniform *D*-dimensional Bose gas of identical cold atoms with mass *m*, described by the complex field $\psi(\vec{r}, \tau)$.

The partition function

$$\mathcal{Z} = \int D(ar{\psi},\psi) \, e^{-rac{S[ar{\psi},\psi]}{\hbar}},$$

From nonuniversal effects to bubble traps

Nonuniversal effects Weakly-interacting bosons are usually described with the zero-range interaction $\tilde{V}(k) = g_0$. With scattering theory, g_0 is linked to the s-wave scattering length a_s (universal parameter).

Bibliography

- [1] A. Tononi, A. Cappellaro, L. Salasnich, New J. of Phys., **20**, 125007 (2018).
- [2] A. Tononi, Condens. Matter **4**, 20 (2019).

[3] A. Tononi, L. Salasnich, Physical Review Letters, 123, 160403 (2019).

 $S[\bar{\psi},\psi] = \int_{0}^{\beta h} d\tau \int_{V} d^{D} r \mathcal{L},$ $\mathcal{L} = \bar{\psi}_{\vec{r},\tau} \left(\hbar \partial_{\tau} - \frac{\hbar^2 \nabla^2}{2m} - \mu \right) \psi_{\vec{r},\tau}$ $+\frac{1}{2}\int d^{D}r' |\psi_{\vec{r},\tau}|^{2} V(\vec{r}-\vec{r}') |\psi_{\vec{r}',\tau}|^{2}$

Performing functional integration at a Gaussian level $(\psi_{\vec{r},\tau} = \psi_0 + \eta_{\vec{r},\tau})$, one obtains $\Omega = -\beta^{-1} \ln Z$ as $\Omega(\mu, \psi_0^2, T) = \Omega_0 + \Omega_g^{(0)} + \Omega_g^{(T)}$ with the excitation spectrum $E_{\vec{k}} = \sqrt{\left(\varepsilon_k - \mu + g_0\psi_0^2 + \psi_0^2\,\tilde{V}(\vec{k})\right)^2 - \left(\psi_0^2\,\tilde{V}(\vec{k})\right)^2}$ We study $\tilde{V}(k) = g_0 + g_2 k^2$, including the first nonzero correction in the momentum. Here g_0 and g_2 are linked to a_s and:

- r_{eff} in 3D (effective range)

- R_{ch} in 2D (characteristic range) In specific regimes (in 3D: $a_s/r_{eff} \leq 1$, in 2D: $a_s/R_{ch} \leq 1$) the finite-range corrections to the thermodynamics are relevant.

Bubble traps Bubble traps are produced with the external potential

$$U(\vec{r}) = \sqrt{(u(\vec{r}) + \hbar\Delta)^2 + \hbar\omega^2},$$

with $u(\vec{r})$ an harmonic potential. In the thin-shell limit, we simply put $V = S^2$.

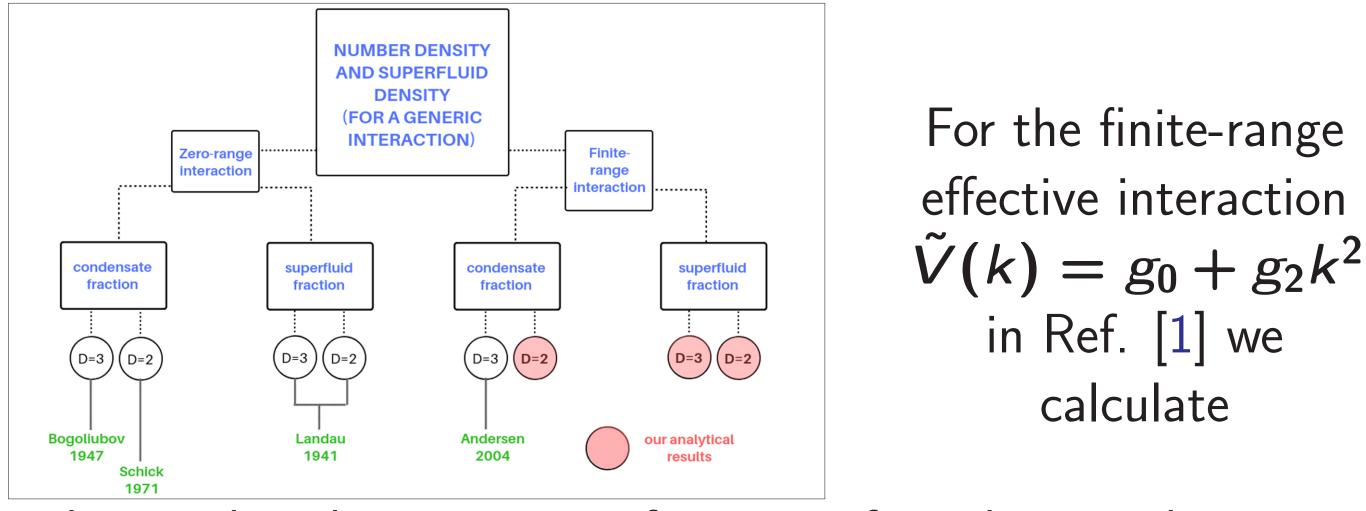
Nonuniversal equation of state in 2D

Condensation and superfluidity in D

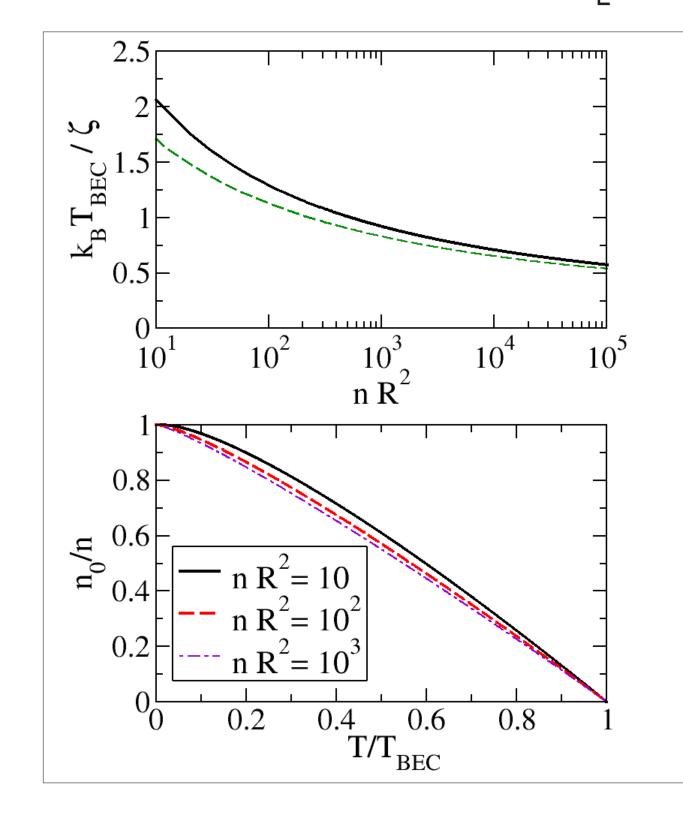
With the superfluid parametrization $\psi = \sqrt{\rho_0 + \delta\rho} e^{i\theta}$, we derive in Ref. [2] the zero-temperature equation of state for a 2D homogeneous Bose gas $P(\mu, T = 0) = \frac{m\mu^2}{8\pi\hbar^2\lambda^{3/2}} \left[\ln\left(\frac{\epsilon_0}{\mu}\lambda\right) - \frac{1}{2} \right], \quad \lambda = 1 + \frac{4m\mu}{\hbar^2 g_0}g_2$ For $na_s^2 = 10^{-5}$ and $nR_{ch}^2 = 6 \times 10^{-2}$ we get a 20% correction. BEC on a sphere

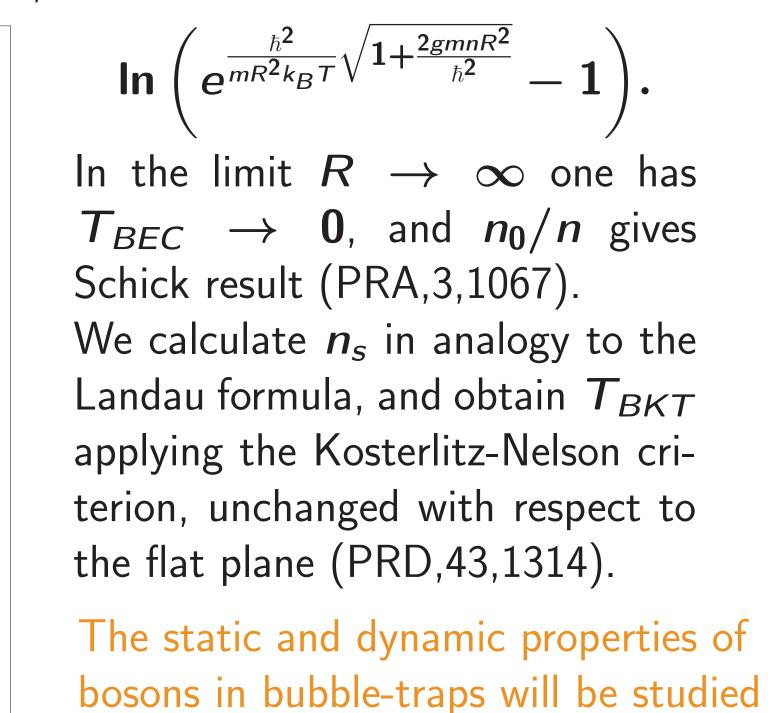
In Ref. [3], we apply VPT to calculate the critical temperature T_{BEC} for interacting bosons confined on a 2D spherical shell $k_B T_{BEC} = \left(\frac{2\pi\hbar^2 n}{m} - \frac{gn}{2}\right) / \left[\frac{\hbar^2 \beta_{BEC}}{2mR^2} \left(1 + \sqrt{1 + \frac{2gmnR^2}{\hbar^2}}\right) - \ln\left(e^{\frac{\hbar^2 \beta_{BEC}}{mR^2} \sqrt{1 + \frac{2gmnR^2}{\hbar^2}}} - 1\right)\right],$ and the condensate fraction $\frac{n_0}{n} = 1 - \frac{mg}{4\pi\hbar^2} - \frac{1}{4\pi R^2 n} \left[1 + \sqrt{1 + \frac{2gmnR^2}{\hbar^2}}\right] + \frac{mk_BT}{2\pi\hbar^2 n} \times$

dimensions

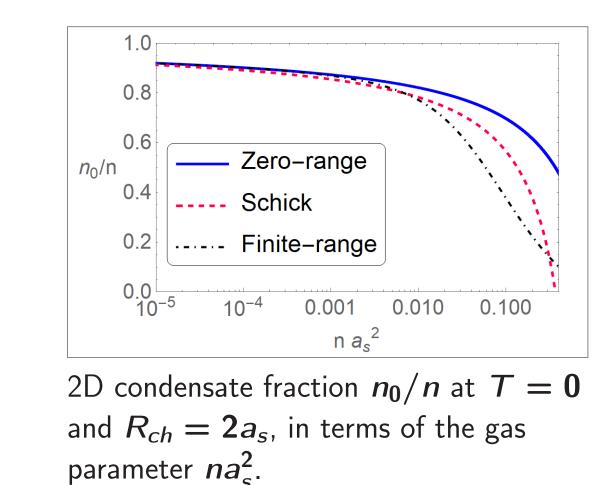


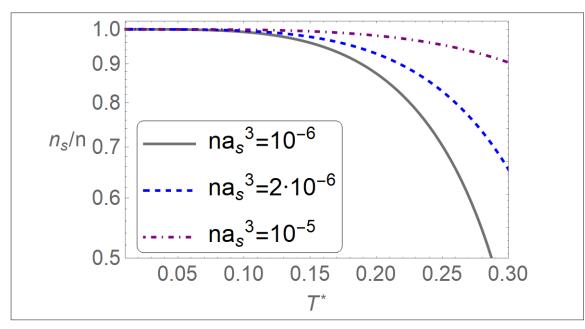
the number density n as a function of condensate density n₀ and T as
n(n₀, T) = - 1/L^D ∂Ω(µ_e, ψ₀, T) / ∂µ_e = n₀ + f⁽⁰⁾_g + f^(T)_g
the superfluid density n_s = n(n₀, T) - n_n(n₀, T), with n_n the normal density given by a self-consistent derivation of Landau formula
Finite-range corrections to n₀/n





in the ISS (microgravity conditions).





3D superfluid fraction n_s/n for $r_{eff} = a_s$, as a function of the temperature $T^* = k_B T/E_r$, where $E_r = \hbar^2 n^{2/3}/m$.

