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Scattering theory and equation of state of a spherical two-dimensional Bose gas
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We analyze the scattering problem of identical bosonic particles confined on a spherical surface. At low
scattering energies and for a radius much larger than the healing length, we express the contact interaction
strength in terms of the s-wave scattering length. Adopting this relation, we are then able to regularize the
zero-point energy of the spherical Bose gas and to obtain its equation of state, which includes the corrections due
to the finite radius of the sphere and coincides with the flat-case result in the infinite-radius limit. We also provide
a microscopic derivation of the superfluid density of the system, reproducing a result postulated in a previous
work. Our results are relevant for modeling the ongoing microgravity experiments with two-dimensional bubble-
trapped Bose-Einstein condensates.
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I. INTRODUCTION

The main theoretical advances in the study of weakly inter-
acting Bose gases were achieved by reducing the complexity
of the full many-body problem to the analysis of the quantum
statistical properties of few noninteracting constituents. In
the ideal Bose gas, for instance, one can derive the system
thermodynamics by solving the Schrödinger equation of a
single boson [1,2], while a zero-temperature dilute gas is well
described by a single macroscopic field satisfying the mean-
field Gross-Pitaevskii equation [3,4]. The explicit many-body
nature of a quantum gas emerges when considering the fluctu-
ations beyond the mean-field configuration, but nonetheless,
these are rephrased in terms of noninteracting Bogoliubov
quasiparticles [5,6]. Coherently with these examples, the in-
teratomic interactions of a bosonic gas, which are the object
of our investigation, are also typically modeled through the
analysis of a single particle scattering on the potential core.

Typically, since the precise form of the interaction potential
is unknown, a beyond-mean-field description of a Bose gas
is based on the assumption that the bosons interact with a
zero-range two-body interaction of strength g0. This physi-
cally motivated, but nonetheless rough, assumption yields a
divergence of the zero-point energy of the quasiparticles and
requires proper regularization techniques, such as dimensional
regularization [7], the inclusion of momentum cutoffs [8], and
the use of convergence factors [9]. After the regularization,
the analysis of the low-energy scattering properties of two
bosonic particles allows us to relate the interaction strength g0

with the s-wave scattering length as, which is a measurable
quantity. This can be done within the Born approximation
in three-dimensional weakly interacting systems, and these
steps, therefore, yield the equation of state expressed in terms
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of physical parameters, which can be compared with the
experiments.

In the two-dimensional (2D) case, which will be analyzed
in the present paper, the general procedure described above
requires the summation of the Born series and has been im-
plemented several times to obtain the equation of state (see
Refs. [10–15]). These works, however, deal with a uniform,
infinite, and flat gas. In this work, instead, we consider a
finite-size curved Bose gas confined on the surface of a sphere
[16], and we derive its regularized equation of state by imple-
menting the scattering theory in this context [17].

The present study supplements the work of Ref. [18] and
is motivated by the ongoing microgravity experiments with
shell-shaped Bose-Einstein condensates [19,20]. This geom-
etry is engineered via a magnetic trapping of the atoms
with radio-frequency-induced adiabatic potentials [21] and
requires microgravity conditions due to the technical difficulty
of counterbalancing gravity in ground-based experiments
[22–24]. By tuning the shell thickness, these experiments
will allow the tuning of the effective two-body interaction,
exploring different interaction regimes that are quantitatively
described by our equation of state. Moreover, future analy-
ses will enable the study of vortex physics [25–27], of the
hydrodynamic excitations [28–30], of the shell thermodynam-
ics [31], and of the Berezinskii-Kosterlitz-Thouless transition
[18,32].

A brief synopsis of the paper is as follows. After modeling
the zero-range scattering of two particles on a spherical sur-
face (Sec. II A), we link the low-energy scattering amplitude
with the s-wave scattering length of the real interatomic poten-
tial (Sec. II B). With this procedure, we are able to regularize
the zero-point energy of the spherical Bose gas (Sec. III A),
obtaining the equation of state at zero temperature and at
finite temperature. Our formalism also allows us to provide a
microscopic derivation of the superfluid density of the system
(Sec. III B), which we calculate from the nonclassical moment
of inertia of a rotating sphere.
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II. SCATTERING ON A SPHERICAL SURFACE

The scattering problem of identical particles of mass m
can be considerably simplified when it is possible to analyze
independently the center-of-mass motion and the relative mo-
tion. When this reduction is implemented, the relative problem
is usually formulated as a Schrödinger equation for a single
particle with reduced mass m/2 that scatters in the two-body
interaction potential V̂ . If we consider two interacting parti-
cles on the surface of a sphere, however, it is not generally
valid to assume that the center-of-mass motion and the rela-
tive one are decoupled. In this case, a possible work-around
consists of discussing the scattering of a single particle with
mass m in the interaction potential [17]. Another possibility
of simplification that we will implement in this paper consists
of assuming that the radius of the sphere R is much larger
than the healing length ξ =

√
h̄2/(2mμ), with μ being the

chemical potential of the many-particle system, and assuming
that the relative wave vector of the interacting particles is
much larger than the inverse radius. Under these conditions,
scattering occurs in a near-Euclidean regime; that is, there are
perturbative corrections with respect to the scattering problem
in the 2D flat case [17], and the problem can be approximately
formulated in terms of a particle with reduced mass moving
in the interaction potential. It is relevant to note that, even for
particles interacting in a finite-size 2D box, the separability
occurs only when the box size exceeds both ξ and the inverse
of the relative wave vector, similar to our assumption in the
spherical case.

By following the analysis of Lippmann and Schwinger
[33], it is possible to reformulate the Schrödinger equation de-
scribing the dynamics of the particles in a time-independent
formalism, which requires the calculation of probability am-
plitudes between the initial states of the system, i.e., |φ〉, and
the outgoing scattering states, i.e., |� (+)〉. The former are
usually assumed to be the eigenstates of the noninteracting
Hamiltonian Ĥ0, with eigenvalues E0, while the scattering
state solves the Schrödinger equation for the complete Hamil-
tonian Ĥ0 + V̂ . Introducing the T̂ matrix, which satisfies
the relation T̂ |φ〉 = V̂ |� (+)〉, one finds the Lippmann-
Schwinger equation [33,34]

T̂ = V̂ + V̂
1

E0 − Ĥ0 + iη
T̂ , (1)

which admits an iterative solution for T̂ that generates the
Born series [34] and where η → 0+ is a small positive param-
eter that is added to regularize the denominator.

In the following, we calculate the T̂ -matrix elements for
low-energy scattering on the surface of a sphere. We will then
link this result with a measurable scattering parameter, the
s-wave scattering length, which will allow us to obtain the
regularized equation of state of a Bose gas on the surface of a
sphere.

A. Low-energy solution of the Lippmann-Schwinger equation

To obtain the explicit solution of the Lippmann-Schwinger
equation, we consider a spherical surface with radius R,
parametrized by a system of spherical coordinates {θ, ϕ} ∈
[0, π ] × [0, 2π ], so that |θ, ϕ〉 is the position vector. In our

analysis, the radius determines a natural energy scale ER =
h̄2/(mR2), with h̄ being the Planck’s constant, which we use
to rescale all the energies and Hamiltonians of the present
section.

The scattering state |φ〉 = |l0, ml0〉 of a particle with re-
duced mass satisfies the following adimensional Schrödinger
equation:

Ĥ0 |l0, ml0〉 = El0 |l0, ml0〉 , (2)

where the dimensionless Hamiltonian Ĥ0 (expressed in units
of ER) reads

Ĥ0 = −
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

]
(3)

and is thus proportional to the angular momentum operator in
spherical coordinates L̂2. The dimensionless energies El0 are
given by

El0 = l0(l0 + 1), (4)

and the noninteracting eigenstates |l, ml〉 are such that
Y ml

l (θ, ϕ) = 〈θ, ϕ|l, ml〉 are the spherical harmonics, with
l = 0, 1, 2, . . . and ml = −l, . . . , l being the quantum num-
bers of the angular momentum. We emphasize that the bases
{|θ, ϕ〉} and {|l, ml〉} are both orthonormal since they satisfy
the identities

〈θ ′, ϕ′|θ, ϕ〉 = δ(cos θ − cos θ ′) δ(ϕ − ϕ′), (5)

〈l ′, m′
l |l, ml〉 = δl,l ′ δml ,m′

l
, (6)

where δ denotes both the Dirac and Kronecker deltas, and they
are also complete since

1 =
∫ 2π

0
dϕ

∫ π

0
dθ sin θ |θ, ϕ〉 〈θ, ϕ| , (7)

1 =
∞∑

l=0

l∑
ml =−l

|l, ml〉 〈l, ml | . (8)

To solve the Lippmann-Schwinger equation (1) and thus
to solve the scattering problem on the sphere, we need to
model explicitly the two-body potential V̂ . A widely used ap-
proximation in the field of weakly interacting quantum gases
consists of describing the low-energy isotropic interactions
via a zero-range two-body potential V̂0.

In a flat system, in which the wave vectors are a good
basis, this assumption corresponds to setting V̂0 = g̃0 δ(r),
so that the matrix element between different wave vector
states is constant and equal to the contact interaction strength
g̃0, namely, 〈k′|V̂0|k0〉 = g̃0. We model the interaction in the
spherical case under the same assumption by setting

V̂0 = V0(θ, ϕ), (9)

where V0(θ, ϕ) = g̃0 δ(1 − cos θ ) δ(ϕ) and g̃0 = g0m/h̄2 rep-
resents the zero-range interaction strength between the
particles, which have a relative angular distance correspond-
ing to the coordinates (θ, ϕ). In contrast to flat systems, it
must then be stressed that the matrix element between dif-
ferent spherical harmonics states is not constant. We find, in
particular, that

〈l ′, ml ′ = 0|V̂0|l0, ml0 = 0〉 = g̃0

√
(2l ′ + 1)(2l0 + 1)

4π
, (10)
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which can be verified by inserting the identity of Eq. (7)
inside the brackets on the left side and using the definition of
spherical harmonics. In this expression, as we will assume in
the following, we have set ml ′ = 0 = ml0 , which corresponds
to describing only s-wave scattering, in which the interacting
particles do not exchange quanta of the angular momen-
tum. This assumption is valid for low scattering energies, at
which 〈l ′, ml ′ |V̂ |l0, ml0〉 ≈ 〈l ′, ml ′ = 0|V̂0|l0, ml0 = 0〉. Before
proceeding, we note an important fact implicit in Eq. (10): in
the context of the approximations done, the ratio

g̃0 = 4π 〈l ′, ml ′ = 0|V̂0|l0, ml0 = 0〉√
(2l ′ + 1)(2l0 + 1)

(11)

coincides with the bare interaction strength g̃0.
Let us substitute the potential V̂ with V̂0 in the Lippmann-

Schwinger equation (1), which becomes

T̂ = V̂0 + V̂0
1

El0 − Ĥ0 + iη
T̂ , (12)

and then we calculate the T -matrix element Tl ′,l0 =
〈l ′, m′

l = 0| T̂ |l0, ml0 = 0〉, obtaining

Tl ′,l0 = g̃0

√
(2l ′ + 1)(2l0 + 1)

4π

×
[

1 +
∞∑

l=0

l∑
ml =−l

√
2l + 1√
2l0 + 1

〈l, ml | T̂ |l0, ml0 = 0〉
El0 − El + iη

]
,

(13)

where we have inserted the identity of Eq. (8) on the right-
hand side. Note that this integral equation for Tl ′,l0 is not
closed since its solution requires knowledge of the matrix
element 〈l, ml | T̂ |l0, ml0 = 0〉 for ml 
= 0. However, consis-
tent with our assumption (10) for the interaction potential, we
neglect all the T -matrix elements with ml 
= 0, and we solve
the equation

Tl ′,l0 = g̃0

√
(2l ′ + 1)(2l0 + 1)

4π

×
[

1 +
∞∑

l=0

√
2l + 1√
2l0 + 1

Tl,l0

El0 − El + iη

]
, (14)

which is a closed “integral” equation for Tl ′,l0 .
Following the usual operatorial approach of scattering

theory, Eq. (14) can be solved by iteration (i.e., repeatedly
substituting Tl,l0 appearing on the right-hand side with the
whole right-hand side) and summing the resulting geometric
series [34]. This procedure leads to

√
(2l ′ + 1)(2l0 + 1)

4πTl ′,l0
= 1

g̃0
+ 1

4π

∞∑
l=0

(2l + 1)

El − El0 − iη
, (15)

in which the right-hand side does not depend on l ′ and ml ′ .
Due to the choice of a zero-range interaction, indeed, the
calculation is actually valid in a regime of very low energy
scattering in which the interaction strength is g̃0 � 1, the only
relevant T -matrix elements are those for which 〈l ′, m′

l = 0|
is near |l0, ml0 = 0〉, and the matrix element Tl ′,l0 coincides
with the on-shell T matrix T (El0 + iη) [35]. In analogy with

Eq. (11), we introduce the quantity

g̃e(El0 + iη) = 4πTl ′,l0√
(2l ′ + 1)(2l0 + 1)

. (16)

In this context, we can interpret the effective coupling con-
stant g̃e(El0 + iη) as a “renormalized” interaction strength that
includes multiple zero-range scattering processes generated
by the iterative solution of Eq. (14). Thanks to the definition
of g̃e, we find a familiar equation in the context of scattering
theory [8], namely,

1

g̃e(El0 + iη)
= 1

g̃0
+ 1

4π

∞∑
l=0

2l + 1

El − El0 − iη
, (17)

which relates the effective interaction strength g̃e to
the bare interaction strength g̃0. This equation, which
goes beyond the Born approximation of setting Tl,l0 ≈
〈l, ml = 0|V̂0|l0, ml0 = 0〉 in Eq. (14), is a standard one for
zero-range scattering [36] and is a crucial step for obtaining
the equation of state of a 2D quantum gas [13].

To obtain an explicit analytical result for g̃e, we need to
calculate the sum on the right-hand side of Eq. (17). We
rewrite this term as ∫ lc

0
dl

(2l + 1)

El − El0 − iη
, (18)

where we included a finite cutoff lc to avoid obtaining a
divergent result. The cutoff lc is finite but is much larger
than l0, and it is regulated by physical processes that are not
described by the simple zero-range interaction V̂0 that we have
assumed. The next equations should be thought of in the limit
of lc � 1, but we stress that, in the final expression for the
equation of state, this cutoff will cancel out, and the limiting
procedure will be trivial. We calculate Eq. (18) expressing the
integrand as 1/[h(l ) − iη] = [h(l ) + iη]/[h(l )2 + η2], and we
finally obtain g̃e(El0 ) as

g̃e,lc (El0 ) = − 2π

− 2π
g̃0

+ 1
2 ln

[ l0(l0+1)
lc (lc+1)

] − i π
2

, (19)

where we took the limit η → 0+ at the end and where the
subindex lc reminds us of the inclusion of the ultraviolet
cutoff lc. Now that g̃e,lc (El0 ) is known, let us state again our
main goal: we want to express the interaction strength g̃0 as
a function of the cutoff lc, of l0, and of the s-wave scattering
length. To obtain this relation, we will impose that

g̃e,lc (El0 ) = f0(El0 ), (20)

where f0(El0 ) is the scattering amplitude of the partial s wave
for an incident wave with energy El0 and g̃e,lc (El0 ) is essen-
tially a renormalized interaction strength [37]. In the next
section, inspired by the analysis of potential scattering on a
spherical surface in Ref. [17], we calculate f0(El0 ).

B. The s-wave scattering amplitude

The following calculations are mainly based on the anal-
ysis of Ref. [17], which discussed the potential scattering of
a single particle of mass m on the surface of a sphere: here
we implement an analogous calculation for a particle with
reduced mass m/2. Note that the use of the reduced mass is
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implicitly included with our rescaling in terms of the energy
ER ≡ h̄2/[2(m/2)R2]. As discussed at the beginning of Sec. II,
this is a valid approximation when the radius of the sphere is
much larger than the healing length of the system and if the
relative scattering energy is much larger than ER (which, since
we rescale the energies with ER itself, means E � 1).

To define the s-wave scattering length, we go back to the
scattering problem for the real interatomic potential V̂ . Let us
assume that V̂ is a spherically symmetric potential, in which
the range of the two-body interaction r0 = R θ0, with θ0 being
the angular range, is much smaller than the radius of the
sphere R. In this case, at larger angular distances with respect
to θ0, the scattering problem can be expressed as [17]

Ĥ0�
μ
ν (θ, ϕ) = Eν�

μ
ν (θ, ϕ), θ > θ0, (21)

which, formally, coincides with the free Schrödinger equation.
However, the eigenfunctions �μ

ν are, in general, different
from the spherical harmonics Y ml

l since ν is a continuous in-
dex, and in the region inside the interaction range, i.e., θ � θ0,
these eigenfunctions must be matched with the solution of the
interacting eigenproblem.

The general solution of Eq. (21) for s-wave scattering (for
which μ = 0) reads [38]

�0
ν (θ, ϕ) = AP0

ν (cos θ ) + BQ0
ν (cos θ ), θ > θ0, (22)

where P0
ν (cos θ ) and Q0

ν (cos θ ) are the associated Legendre
functions of first and second kinds for μ = 0 and A and B
are coefficients. By properly redefining these quantities, the
solution can also be put in the form

�0
ν (θ, ϕ) ∝ P0

ν (cos θ ) + f0(Eν )

4i

[
P0

ν (cos θ ) + 2i

π
Q0

ν (cos θ )

]
,

(23)

where f0(Eν ) is the s-wave scattering amplitude. To determine
it, we first need to expand the scattering state in the angular re-
gion θ0 < θ < 1/ν, with ν � 1, for which the associated Leg-
endre functions can be approximated as [17,38] P0

ν (cos θ ) =
1 + o(θ2) and Q0

ν (cos θ ) = − ln(θνeγE/2) + o(θ, ν−1), where
γE is the Euler-Mascheroni constant. Following the analogous
procedure with respect to the flat 2D case [36,39], we define
the length as, and thus the corresponding angle θs = as/R,
as the distance at which the scattered state �0

ν vanishes, i.e.,
�0

ν (θs, ϕ) = 0. After imposing this condition in Eq. (23), in
which the associated Legendre functions are expressed in the
asymptotic form discussed above, we obtain

f0(Eν ) = − 4

cot δ0(Eν ) − i
, (24)

which is the amplitude of s-wave scattering on the surface of
a sphere, where the cotangent of the phase shift reads

cot δ0(Eν ) = 2

π
ln

(
ν θs eγE

2

)
(25)

[17,38], which coincides with that of Ref. [17] if their constant
B is identified with B−1 = ln(R θ0/as). Let us then remark
that our scattering amplitude is only proportional to the one
calculated in Ref. [17], and the different prefactor is chosen in
such a way that f0(Eν ) coincides with the effective interaction

strength g̃e,lc (El0 ). This can be seen by comparing our scatter-
ing state in Eq. (23) with the analogous one for 2D scattering
in Ref. [36], in which the same constants are chosen to ensure
the validity of Eq. (20). Note that it is possible to choose the
multiplicative prefactor in the scattering amplitude as required
(see, for instance, the papers on 2D scattering [39–42] and, in
particular, the discussion in [41]), provided that the scattered
wave is divided by the same factor, and the cross section is
thus correctly calculated.

As a last step, we set ν = l0, and using the expressions
obtained in Eqs. (19) and (24), we impose the condition of
Eq. (20), i.e., that g̃e,lc (El0 ) = f0(El0 ), which allows us to
identify g̃0. Reintroducing the dimensional constants as g0 =
h̄2g̃0/m, we obtain the zero-range interaction strength:

g0 = −2π h̄2

m

1

ln[
√

lc(lc + 1) aseγE/(2R)]
, (26)

which is expressed as a function of the cutoff lc, of the s-wave
scattering length on the sphere as, and of the radius R. This is
a central result of this paper, and it will be crucial for deriving
the regularized equation of state.

III. EQUATION OF STATE OF A SPHERICAL
TWO-DIMENSIONAL BOSE GAS

We derive here the grand-canonical potential 
 of a
bosonic gas confined on the surface of a sphere. In particular,
we calculate it as 
 = −β−1 ln Z , where β = 1/(kBT ) is the
inverse temperature, with kB being the Boltzmann constant,
and Z is the grand-canonical partition function. Following
Ref. [16], we calculate Z as a coherent-state functional inte-
gral over the bosonic field ψ (θ, ϕ, τ ) [43], namely,

Z =
∫

D[ψ̄, ψ] e− S[ψ̄,ψ]
h̄ , (27)

where the Euclidean action is given by

S[ψ̄, ψ] =
∫ β h̄

0
dτ

∫ 2π

0
dϕ

∫ π

0
dθ sin θ R2 L (ψ̄, ψ ),

(28)
which is written in terms of the Euclidean Lagrangian

L = ψ̄ (θ, ϕ, τ )

(
h̄∂τ + L̂2

2mR2
− μ + 
zL̂z

)
ψ (θ, ϕ, τ )

+ g0

2
|ψ (θ, ϕ, τ )|4, (29)

where μ is the chemical potential; τ is the imaginary time; and
the term 
zL̂z, with L̂z = −ih̄ ∂ϕ being the angular momentum
in the z direction, models the additional energy contribution
due to the rotation with angular velocity 
z. We stress that,
in this formulation, the quartic term in the Lagrangian results
from the integral

g0

2
|ψ (θ, ϕ, τ )|4

= 1

2

∫ 2π

0
dϕ′

∫ π

0
dθ ′ sin θ ′ R2

× |ψ (θ, ϕ, τ )|2ERV0(θ ′, ϕ′)|ψ (θ + θ ′, ϕ + ϕ′, τ )|2,
(30)
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where the zero-range interaction in real space V0(θ, ϕ) is de-
fined after Eq. (9) and here we multiply it by ER to reintroduce
the correct dimension of energy.

To calculate the grand potential, we implement the
Bogoliubov-Popov theory by writing ψ (θ, ϕ, τ ) = ψ0 +
η(θ, ϕ, τ ) and expanding the Lagrangian (29) up to the
Gaussian fluctuations of η(θ, ϕ, τ ). The Gaussian functional
integral in η can be calculated after expanding this field in the
basis of eiωnτY ml

l (θ, ϕ) and then performing the sum over the
Matsubara frequencies ωn. It yields [16]



(
μ,ψ2

0

) = 
0
(
μ,ψ2

0

) + 
(0)
g

(
μ,ψ2

0

) + 
(T )
g

(
μ,ψ2

0

)
,

(31)

where 
0 = 4πR2 (−μψ2
0 + g0ψ

4
0 /2) is the mean-field grand

potential. The Gaussian fluctuations with respect to the mean-
field configuration, encoding the quasiparticle energies at zero
temperature and at finite temperature, constitute the other con-
tributions. In particular, we have the zero-temperature grand
potential


(0)
g

(
μ,ψ2

0

) = 1

2

∞∑
l=1

l∑
ml =−l

[
El

(
μ,ψ2

0

) − εl − μ
]
, (32)

which includes the counterterms due to the convergence-
factor regularization [9]. The finite-temperature grand-
potential contribution reads


(T )
g

(
μ,ψ2

0

) = 1

β

∞∑
l=1

l∑
ml =−l

ln{1 − e−β[El (μ,ψ2
0 )+ml h̄
z]},

(33)
where we define the excitation spectrum as

El
(
μ,ψ2

0

) =
√(

εl − μ + 2g0ψ
2
0

)2 − g2
0ψ

4
0 , (34)

with εl = h̄2l (l + 1)/(2mR2). The effective grand potential
in Eq. (31) depends on the parameter ψ0, which is fixed
by imposing the saddle-point condition 0 = ∂
/∂ψ0, which
allows us to identify the condensate density as n0(μ) = ψ2

0 . It
reads [44]

n0(μ) = μ

g0
− 1

4πR2

∞∑
l=1

l∑
ml =−l

2εl + μ

EB
l

(
1

2
+ 1

eβEB
l − 1

)
,

(35)
where the Bogoliubov spectrum is defined as

EB
l =

√
εl (εl + 2μ), (36)

and it is obtained by considering the Gaussian terms as per-
turbative corrections with respect to ψ2

0 ≈ μ/g0. Substituting
ψ2

0 = n0(μ) into the grand potential (see Refs. [16,44] for
additional details), we get


0[μ, n0(μ)] = −(4πR2)
μ2

2g0
, (37)


(0)
g [μ, n0(μ)] = 1

2

∞∑
l=1

l∑
ml =−l

(
EB

l − εl − μ
)
, (38)


(T )
g [μ, n0(μ)] = 1

β

∞∑
l=1

l∑
ml =−l

ln[1 − e−β(EB
l +ml h̄
z )], (39)

which are the contributions of the grand potential of a spheri-
cal Bose gas under rotation.

A. Grand potential and number density

Let us now obtain the regularized equation of state of the
spherical Bose gas by using the previous results of scattering
theory. To study the thermodynamics of the system, we need
to set the angular rotation of the superfluid film to 
z = 0, and
the consequences of 
z 
= 0 for the transport properties will
be analyzed in the following section.

The zero-point energy fluctuations of the Bose gas, en-
coded in the contribution of Eq. (38), are ultraviolet divergent
as a consequence of the simplified zero-range interaction that
we consider [11]. To regularize this term, we include the
cutoff lc in the sum over l and express the zero-temperature
grand potential per unit of area as


(0)

4πR2
= − μ2

2g0
+ 1

8πR2

lc∑
l=1

(2l + 1)
(
EB

l − εl − μ
)
, (40)

where lc� 1 is unknown. To calculate the sum over l of the
function ω(l ) = (2l + 1)(EB

l − εl − μ), we adopt the Euler-
Maclaurin formula truncated at the second order:

lc∑
l=1

ω(l ) =
∫ lc

1
ω(l ) dl − 1

2

lc∑
l=1

dω

dl
− 1

6

lc∑
l=1

d2ω

dl2
, (41)

which provides additional corrections with respect to the
direct substitution of the sum with an integral and ne-
glects additional higher-order terms in the formula, which
are smaller than o[(ξ/R)2], with ξ =

√
h̄2/(2mμ) being the

healing length. While the integral term can be calculated
analytically, the summations must be evaluated numerically
for lc � 1, and since the latter depend on the ratio μ/ER,
it is necessary to fix this parameter. In practice, we expect
that the typical experiments [18] are done in the regime of
μ/ER ∈ [1, 103], in which these sums scale almost linearly
with the chemical potential μ, with a coefficient determined
numerically.

After we implement the procedure discussed here, Eq. (40)
yields


(0)

4πR2
= − μ2

2g0
− mμ2

8π h̄2 ln

[
h̄2lc(lc + 1)

m
(
EB

1 + ε1 + μ
)
R2 e1/2

]

+ mEB
1

8π h̄2

(
EB

1 − ε1 − μ
) − C1μ

4πR2
, (42)

with C1 = 0.62 being a numerical coefficient, which is clearly
divergent in the limit of lc → ∞. This logarithmic divergence,
however, is perfectly counterbalanced by the analogous loga-
rithmic one of g0 [see Eq. (26)]. In conclusion, substituting g0

in the zero-temperature grand potential, we get


(0)

4πR2
= − mμ2

8π h̄2

{
ln

[
4h̄2

m
(
EB

1 + ε1 + μ
)
a2

s e2γ+1

]
+ 1

2

+ 2C1h̄2

mμR2

}
+ mEB

1

8π h̄2

(
EB

1 − ε1 − μ
)
, (43)

which is the zero-temperature grand potential of a spherical
superfluid film. We stress that, in the limit of infinite radius
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FIG. 1. Finite-size corrections to the zero-temperature equa-
tion of state of a spherical Bose gas of density n, given by Eq. (44)
at T = 0. We show in particular the adimensional quantity (n∞ −
n) 4πR2, where n∞ is the density of the infinite system [13], ob-
tained from Eq. (44) in the limit of R → ∞, as a function of the
parameter ξ/R. The inset shows the behavior of the function α(μ)
[see Eq. (45)], which tends to zero at the thermodynamic limit.

R → ∞, we have ε1, EB
1 → 0, and our equation of state co-

incides with the standard one-loop result of Ref. [13]. At the
same time, our result includes the leading curvature correc-
tions to the equation of state of a large spherical Bose gas.

The number density n = N/(4πR2) of the spherical
Bose gas can be calculated by deriving the grand-potential
density with respect to the chemical potential, i.e., n =
−∂[
/(4πR2)]/∂μ. Including also the finite-temperature
contribution, which originates from 
(T )

g , we get

n = mμ

4π h̄2 ln

{
4h̄2[1 − α(μ)]

mμ a2
s e2γ+1+α(μ)

}
+ C1

4πR2

+ 1

4πR2

∞∑
l=1

l∑
ml =−l

εl

EB
l

1

eβEB
l − 1

, (44)

where we introduce the function

α(μ) = 1 − μ

μ + EB
1 + ε1

, (45)

which is positive and nonzero for finite values of the radius
and tends to zero in the thermodynamic limit (see the inset
in Fig. 1). Our equation of state (44) represents the density
of the spherical Bose gas at finite temperature, obtained at a
Gaussian beyond-mean-field level, and it includes the correc-
tions (with respect to the flat-case result [13]) due to the finite
radius of the sphere. This result provides a refined descrip-
tion of the thermodynamics of a shell-shaped condensate and
elucidates the quantitative role of curvature, controlled by the
finite radius, in the spherically symmetric case.

We illustrate the quantitative relevance of the finite-size
corrections in Fig. 1, where we plot the difference between the
zero-temperature density of the infinite system n∞ and that of
the finite sphere, multiplied by the area of the sphere itself
4πR2. In particular, our theory is valid in the region of small
ξ/R, in which these corrections to the number of particles in

the system are more relevant. To observe these effects, it is
thus favorable to have a sufficiently small ξ/R (i.e., a large
radius of the sphere), keeping in mind that the correction to the
number density, which is the only well-defined quantity in the
thermodynamic limit, vanishes in the infinite-radius regime of
ξ/R → 0. As a practical example, we consider a spherical gas
with a sufficiently low density and assume that it is possible to
tune the interatomic interactions so that the ratio ξ/R can be
diminished while keeping the radius small and fixed. Then, for
the realistic value of ξ/R = 1/50 (see Ref. [18]), the expected
difference between the number density and the infinite system
one is quite relevant since we find (n∞ − n) 4πR2 ≈ 102.

B. Microscopic derivation of the superfluid density

When a quantum liquid is rotated, for instance, imposing
the motion of the external potential, only the normal part of
the fluid is dragged. In the Lagrangian in Eq. (29), the addi-
tional energy contribution due to the trap rotation is encoded
into the term ∝ 
zL̂z, where the angular velocity 
z is essen-
tially a Lagrange multiplier. The average angular momentum
density of the normal fluid Ln can then be calculated by simply
deriving the effective potential of Eq. (31) with respect to 
z.
Specifically, we set [45,46]

Ln = −
(

∂
(μ,ψ2
0 )

∂
z

)∣∣∣∣
ψ2

0 =n0(μ)

, (46)

and inspired by the approach of Landau [5], we expand the
angular momentum for a small rotational velocity 
z. We find
that

Ln = β

∞∑
l=1

l∑
ml =−l

h̄2m2
l

eβEB
l

(eβEB
l − 1)2


z, (47)

where the Bogoliubov spectrum EB
l appears when the condi-

tion ψ2
0 = n0(μ) is imposed. Considering that [47]

l∑
ml =−l

m2
l = 1

3
(2l + 1)(l2 + l ), (48)

the angular momentum can be expressed as

Ln = In
z, (49)

where

In = β

3

∞∑
l=1

(2l + 1) h̄2(l2 + l )
eβEB

l

(eβEB
l − 1)2

(50)

is the moment of inertia of the normal fluid. A spherical
surface with total mass Mn = mn(0)

n (4πR2), where n(0)
n is the

density of the normal fluid, has an angular momentum given
by In = 2MnR2/3, which allows us to immediately identify
the normal density n(0)

n . The superfluid density is simply given
by the difference between the total density and the normal
density, namely,

n(0)
s = n − β

∞∑
l=1

(2l + 1)

4πR2

h̄2l (l + 1)

2mR2

eβEB
l

(eβEB
l − 1)2

, (51)

which is exactly the result postulated in our previous work
[16]. However, we emphasize that Eq. (51) is obtained here
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with a microscopic derivation based on the functional integral
formulation of quantum field theory.

We also stress that, in the limit of infinite area, our bare
superfluid density coincides with that of a two-dimensional
flat superfluid. Let us show this explicitly: we first substi-
tute the sum in Eq. (51) with an integral which is exact
when the spacing between the energy levels, proportional
to R−2, becomes zero. Then, identifying 4πR2 with the flat
system area L2 and redefining the integration variable with
k = [4π (l2 + l )/L2]1/2, we get

n(0)
s, flat = n − β

∫ ∞
√

8π/L

dk

2π
k

h̄2k2

2m

eβEB
k

(eβEB
k − 1)2

, (52)

with EB
k =

√
h̄2k2/(2m)[h̄2k2/(2m) + 2μ] being the flat-case

Bogoliubov spectrum. It can be verified that, in the thermody-
namic limit, Eq. (52) coincides with the superfluid density of
a flat superfluid [48].

IV. CONCLUSION

We analyzed the low-energy scattering problem on a spher-
ical surface, and we expressed the interaction strength of a
zero-range potential in terms of the s-wave scattering length.
With this crucial relation, we obtained the regularized equa-
tion of state of a spherical Bose gas at finite temperature, and
we provide a microscopic derivation of the superfluid density

of the system. Our results will support experiments with two-
dimensional shell-shaped Bose-Einstein condensates obtained
by trapping a quantum gas with radio-frequency-induced
adiabatic potentials. Even if the cleanest environment for
implementing these traps is constituted by space-based mi-
crogravity facilities such as the Cold Atom Lab [19,49–
51], the experiments can also be conducted in earth-based
microgravity laboratories [52]. In principle, by limiting the in-
vestigation to sufficiently small shells and by properly tuning
the quadrupolar magnetic field, it is possible to test our pre-
dictions also in standard ground-based laboratories [53]. An
alternative promising path for the realization of shell-shaped
condensates is offered by bichromatic optical dipole traps
[54–56], combined with a magnetic field gradient to coun-
terbalance gravity. The variety of possible implementations
will allow us to investigate our finite-temperature equation of
state and to explore the emergent physics of vortices, long-
range interactions, and other nontrivial phenomena [57,58] in
a curved quantum gas with the topology of a sphere.
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