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Propagation of first and second sound in a two-dimensional Fermi superfluid
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Sound propagation is a macroscopic manifestation of the interplay between the equilibrium thermodynamics
and the dynamical transport properties of fluids. Here, for a two-dimensional system of ultracold fermions, we
calculate the first and second sound velocities across the whole BCS-BEC crossover, and we analyze the system
response to an external perturbation. In the low-temperature regime we reproduce the recent measurements
[Phys. Rev. Lett. 124, 240403 (2020)] of the first sound velocity, which, due to the decoupling of density and
entropy fluctuations, is the sole mode excited by a density probe. Conversely, a heat perturbation excites only
the second sound, which, being sensitive to the superfluid depletion, vanishes in the deep BCS regime and jumps
discontinuously to zero at the Berezinskii-Kosterlitz-Thouless superfluid transition. A mixing between the modes
occurs only in the finite-temperature BEC regime, where our theory converges to the purely bosonic results.
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I. INTRODUCTION

Investigations on the propagation of sound through a
medium allow to test the microscopic theories on the structure
of matter and to develop new theoretical ideas [1–7]. Along
the historical development of physics, the concept itself of
sound—along with other physical entities—has evolved and
expanded to describe the new experimental evidence, refining
our understanding of nature.

As a remarkable example of this process, we consider the
propagation of sound in quantum liquids. The two-fluid the-
ory of Tisza and Landau [8,9] explained the low-temperature
experiments with 4He [10] describing it as a mixture of a
normal (viscous) component and of a superfluid (nonviscous)
one. The in-phase oscillation of these components, corre-
sponding to the usual density wave and excited by a density
perturbation, was denoted as the first sound. The out-of-phase
oscillation, corresponding to a heat wave and excited by
a local heating of the fluid, was called the second sound
[11–13]. This approximate description in which density and
heat waves are decoupled holds for strongly interacting super-
fluids like 4He and unitary Fermi gases [14–16]. However, it
fails for weakly interacting quantum gases, where the isother-
mal and adiabatic compressibilities substantially differ [14].
In these systems, an experimental protocol consisting either
of a density probe or of a heat one excites—with different
amplitudes—both the first and the second sound: the sound
modes are thus mixed (or hybridized) and the full solution of
the Landau equation of sound is required.

*These authors contributed equally in this work.

In uniform quantum gases, the richest phenomenology
regarding sound propagation is offered by Fermi gases
across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein
condensate (BEC) crossover [17], in which the fermionic
attractive interaction can be tuned from BCS weakly bound
pairs to a BEC of composite bosons. Up to now, the exper-
iments have mainly focused on three-dimensional fermions
in cigar-shaped external potentials, at unitarity [18] and
across the whole crossover [19]. As far as two-dimensional
(2D) systems are concerned, a thorough theoretical descrip-
tion of sound propagation, including the physics of the
Berezinskii-Kosterlitz-Thouless (BKT) transition mediated
by the unbinding of the vortex-antivortex dipoles [20–22], is
currently lacking. Understanding whether and how mixing of
the sound modes occurs is particularly important to bench-
mark the recent [23] and forthcoming investigations on 2D
fermionic gases.

Here we describe the propagation of sound modes across
the two-dimensional BCS-BEC crossover, developing a the-
oretical framework which relies on the beyond-mean-field
equation of state and takes into account the pair fluctuations
of the order parameter. Moreover, we consider the renormal-
ization of the bare superfluid density due to the screening
of the interaction between quantized vortices. In the low-
temperature collisional regime (for the noncollisional one see
Refs. [24–27]), the comparison with recent measurements
[23] of the first sound velocity shows a good agreement.
Confirming the experimental outcome, we find that an exci-
tation protocol consisting of a density probe excites almost
exclusively the first sound, a clear signal of the decoupling
of density and entropy modes across the whole BCS-BEC
crossover. This scheme changes slightly around the BKT crit-
ical temperature, where a partial mixing of the modes occurs
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in the BEC regime: we expect the hybridization to become
more relevant as the system goes deeper into the BEC regime,
reconnecting our theory to the framework of bosonic systems
[14,28]. We predict that a heat perturbation, due to the over-
all limited mixing, can easily excite the second sound: our
results offer a solid benchmark for the future measurements
of the velocity of second sound, which is an excellent and ex-
plicit probe of the BKT transition in uniform two-dimensional
Fermi gases.

II. FIRST AND SECOND SOUND

We consider a uniform two-dimensional superfluid at ther-
modynamic equilibrium. A local perturbation excites two
wavelike modes—the first and the second sound—which
propagate with velocities u1 and u2. Within the framework
of Landau and Tisza two-fluid theory [8,9], these velocities
are determined by the positive solutions of the algebric bi-
quadratic equation
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10 + c2
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)
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one,
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Here we have introduced c10, cT , and c20 as the adiabatic
sound velocity, the isothermal, and the entropic one, respec-
tively: in specific thermodynamic regimes these velocities
provide a good approximation and a clear physical interpreta-
tion of the sound modes u1 and u2. In particular, they read [17]
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where P is the pressure, S is the entropy, ρ = ρs + ρn is the
total mass density, with ρs (ρn) the superfluid (normal) mass
density, respectively. Moreover, cV is the specific heat at con-
stant two-dimensional volume V = L2 (or area) of the system.

In liquid helium and in unitary Fermi gases, where the
approximate equality of the adiabatic and isothermal com-
pressibilities implies that c10 ≈ cT [14], the sound modes of
Eq. (2) can be interpreted as a pure pressure-density wave and
a pure entropy-temperature wave. The first sound, propagating
with a velocity u1 ≈ c10, is thus characterized by an in-phase
oscillation of the superfluid and of the normal fluid, while, as
a result of the out-of-phase oscillation of these components,
the second sound propagates with a velocity u2 ≈ c20.

The simple picture of helium is no longer valid for Fermi
gases in the deep BEC regime and for weakly interacting Bose
gases, where the c10 ≈ cT approximation breaks down due
to the high compressibility of the system [14]. In this case,
an external perturbation of the fluid induces a response in
which the density-pressure and the temperature-entropy fluc-
tuations are mixed. Then, according to the solution of Eq. (2),
a density probe, specified by a proper protocol, can excite
both modes [19]. It is worth stressing that the current exper-
iments with ultracold atoms can access both the amplitude
and the velocity of propagating sound waves. In particular, if
we consider the density response to an external perturbation,

i.e., δρ(r, t ), the Landau two-fluid model predicts δρ(x, t ) =
W1 δρ1(r ± u1t ) + W2 δρ2(r ± u2t ), with W1 the amplitude of
the first sound mode and W2 the amplitude of the second one
[15,29]. Here the relevant experimental parameters are the
relative amplitudes W1,2/(W1 + W2), weighing the response of
the system: these weights can be computed in terms of the
sound velocities of Eqs. (2) and (3) as [14,30]
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By definition, these complementary ratios add up to 1, and
the larger contribution among the two represents which mode
is easier to detect by means of a density excitation protocol.
In the following, after a microscopic derivation of the system
thermodynamics, we will calculate the sound velocities u1 and
u2 for two-dimensional uniform fermions across the whole
BCS-BEC crossover.

III. GAUSSIAN-PAIR FLUCTUATIONS THEORY

A mean-field description of a 2D fermionic gas is quantita-
tively accurate only in the BCS limit and becomes extremely
unreliable even in the intermediate interaction regime. The or-
der paramater fluctuations, neglected in the mean-field theory,
are crucial to describe the full crossover at zero temperature
[31], and particularly to recover the correct composite-boson
limit in the deep-BEC regime [32]. In this paper we adopt the
Gaussian pair fluctuations (GPF) approach [33–36], which has
been also used to determine the bare [37] and renormalized
[38] superfluid density in the 2D BCS-BEC crossover.

A two-component 2D dilute Fermi gas can be described, in
second quantization, by the Hamiltonian

Ĥ =
∑

σ=↑,↓

∫
L2

d2r
{
ψ̂†

σ (r)

(
− h̄2

2m
∇2 − μ

)
ψ̂σ (r)

+ g ψ̂
†
↑(r) ψ̂

†
↓(r) ψ̂↓(r) ψ̂↑(r)

}
,

(5)

where ψ̂σ (r) is the fermionic field operator which annihilates
a fermion at position r with pseudo-spin σ . Here m is the mass
of a fermion and g < 0 is the strength of the attractive contact
interaction between atoms with opposite spins. The constraint
N = ∑

σ

∫
L2 d2r 〈ψ̂†

σ (r)ψ̂σ (r)〉 imposes the conservation of
the particle number N , and the interaction parameter g can be
related to the energy εB of a fermion-fermion bound state; see
Ref. [40]. To study the superfluid phase [1], one introduces the
pairing field �̂(r) = gψ̂↓(r)ψ̂↑(r), corresponding to a Cooper
pair. In a mean-field treatment, the pairing field �̂(r) is ap-
proximated with a constant real parameter, the pairing gap �0.
This approximation leads to the mean-field thermodynamic
grand potential 	mf = β−1 ∑

k(ln{2 cosh[βEsp(k)]} − ξk ) −
�2

0/g with the usual definition of BCS fermionic elementary
excitations Esp(k) = (ξ 2

k + �2
0)1/2, where ξk = h̄2k2/2m − μ,

with μ the chemical potential and β = 1/(kBT ).
Building up on the mean-field theory just outlined, the

two-dimensional nature of the system requires a better treat-
ment, at least including the fluctuations of the pairing field
up to the Gaussian level [33–36]. The Gaussian contribu-
tion to the grand potential, however, is considerably more
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involved, requiring several multidimensional integrations and
the solution of nontrivial issues regarding regularization [41].
It reads 	g = (2β )−1 ∑

Q ln det M(Q) where Q = (q, i	 j )
and 	 j = 2π j/β are bosonic Matsubara frequencies, j ∈ Z.
The physics of the collective excitations is encoded in the
matrix M, the pair fluctuation propagator, whose matrix el-
ements have involved analytical expressions; see Ref. [33]
for the explicit formulas. We derive the spectrum of bosonic
collective excitations, i.e., Ecol(q) = h̄ω(q), from the poles
of the inverse pair fluctuation propagator, namely, by solv-
ing the equation det(M(q, ω)) = 0. The total grand potential
is then given by the sum of the mean-field and Gaus-
sian contributions, 	(μ, T, L2,�0) = 	mf(μ, T, L2,�0) +
	g(μ, T, L2,�0), from which it is possible to derive the gap
equation, (∂	mf/∂�0)μ,T,L2 = 0, and the number equation,
n = −L−2(∂	/∂μ)T,L2 , with n being the fermion density. No-
tice that the number equation is solved taking into account that
�0 depends on μ [36].

We derive the thermodynamic potential 	 by using, as
input information, the chemical potential μ and �0 from the
zero-temperature equation of state (EoS). The temperature
dependence of 	 is encoded in the contributions related to
the single-particle and pair fluctuation excitation spectra, i.e.,
respectively, the first term in 	mf and the whole 	g. We then
evaluate the Helmholtz free energy as F = 	(μ, T, L2,�0) +
μN , and, for an homogeneous system, the pressure reads P =
−	(μ, T, L2,�0)/L2. The entropy S and the specific heat cV

are calculated by differentiating F with respect to the temper-
ature, namely, S = −(∂T F )L2,N and cV = −T (∂2

T F )L2,N . To
calculate the adiabatic and isothermal velocities of Eq. (3)
we employ the following thermodynamical identity: (∂ρP)S =
(∂ρP)T + mNT/(ρ2cV )[(∂T P)ρ]2 [42], where the derivatives
of the pressure at the right-hand side can be evaluated apply-
ing the chain rule on P = P(μ, T, L2,�0) and knowing μ and
�0 from the EoS.

IV. COMPARISON WITH RECENT EXPERIMENTS

The sound velocities of Eq. (2) are a function of both
the thermodynamical equilibrium properties discussed above
and the superfluid density ρs, which, instead, is a transport
quantity. In 2D systems, sound propagation is thus sensitive
to the vanishing of ρs at the BKT critical temperature TBKT

[20,21,43], where the thermally induced unbinding of the
vortex-antivortex dipoles drives the system from the super-
fluid phase to the normal state.

In the low-temperature regime of T 	 TBKT, the superfluid
density ρs is very well approximated by the bare super-
fluid density ρ (0)

s = ρ − ρn,F − ρn,B (see Ref. [38,39]), which
includes two contributions to the normal density: ρn,F , of
fermionic single-particle excitations whose spectrum Esp(k)
is given above, and ρn,B of bosonic collective excitations of
the order parameter, described by Ecol(q). Thus, following
the Landau picture [9], ρ (0)

s describes the superfluid depletion
as driven exclusively by thermal excitations that, neglect-
ing the contribution of the vortices, lead the system into
the normal state at Tc > TBKT. In the temperature regime
of T ∼ TBKT, due to the screening of the vortex-antivortex
interaction [21], the bare superfluid density ρ (0)

s is renormal-
ized to ρ (R)

s . We calculate the renormalized superfluid density

FIG. 1. Evolution of the first sound velocity u1 (red solid line)
and of the second sound velocity u2 (blue dashed line) along the
BCS-BEC crossover, calculated from Eq. (2). The crossover is
parametrized by ln(εB/εF ), where εF = h̄2πn/m. The sound modes
are plotted at a fixed temperature T/TF = 0.01, with TF = εF /kB,
and the velocities rescaled in units of vF = √

2εF /m. Measurements
of the first sound [23] (green points) at T/TF � 0.1 are in good agree-
ment with our theoretical prediction, which is weakly dependent on
temperature (see left inset). Right inset: relative contribution to the
density response of u1 (red solid line) and u2 (blue dashed line) [see
Eq. (4)] computed throughout the crossover at T/TF = 0.01.

ρ (R)
s by jointly solving the Nelson-Kosterlitz renormaliza-

tion group equations [22] dK (�)/d� = −4π3K (�)2y(�)2 and
dy(�)/d� = [2 − πK (�)]y(�) for the running variables K (�)
and y(�), where � is the adimensional scale. In the solution,
we fix the initial conditions K (� = 0) = βJ = β h̄2ρ (0)

s /(4m2)
and y(� = 0) = exp(−βμv ), with J being the phase stiff-
ness of the usual XY model, defined as J = h̄2ρ (0)

s /(4m2)
[44] and μv = π2J/4 being the vortex energy [45]. Since
the flowing stiffness displays a universal jump at the transi-
tion, the renormalized superfluid density is given by ρ (R)

s =
(4m2/h̄2) β K (� = +∞).

In Fig. 1 we show the low-temperature behavior of the
sound modes of Eq. (2), where the thermodynamic functions
have been derived from the Gaussian grand potential 	 and
the superfluid density is given by ρs = ρ (R)

s . The two sound
velocities, u1 (red solid line) and u2 (blue dashed line), are
displayed throughout the whole crossover, from ln(εB/εF ) =
−6 (BCS side) to +6 (BEC side), at a fixed temperature of
T/TF = 0.01. The experimental points (green diamonds) are
the measurements of the first sound velocity from Ref. [23]
and show a good agreement with our low-temperature theo-
retical prediction. The deviations from the theoretical curve
could depend on the limited control of the temperature of the
atomic ensemble, for which only an upper limit, T/TF � 0.1,
was provided [23,46]. Moreover, our partial inclusion of ther-
mal effects, i.e., the use of the zero-temperature EoS for μ and
�0 [37], could worsen the comparison with the experimental
measurements in which the temperature was closer to the limit
of T = 0.1 TF . Our theory also shows that, in agreement with
the mean-field predictions of Ref. [17], the velocity of the
second sound u2 vanishes for ln(εB/εF ) � −5.5, as a conse-
quence of the superfluid depletion in the deep BCS limit.
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FIG. 2. Top panel: plots of the sound velocities defined in Eq. (3),
as a function of the crossover parameter ln(εB/εF ). Bottom panel:
plots of the entropy per particle S/(NkB) and of the specific heat
at constant volume per particle cV /(NkB), used to derive the low-
temperature results of Fig. 1. In both panels the temperature is fixed
to T/TF = 0.01.

In the experiments, u1 and u2 are distinguished by mea-
suring the amplitude of the two propagating modes [19].
In this regard, it is important to know in what proportion a
density probe excites each mode, and in what regions of the
crossover the observation of u1 or u2 is inhibited. In the two-
fluid framework, this information is provided by the amplitude
ratios of Eq. (4), shown in the right inset of Fig. 1. In the
low-temperature regime discussed here and along the whole
BCS-BEC crossover we find that W1/(W1 + W2) ≈ 1 and that
W2/(W1 + W2) ≈ 0. These values of the ratios are a clear
signal of the absence of mixing between the sound modes and,
therefore, that the sound velocities at low temperatures are
well approximated by the expressions valid for liquid helium:
u1 ≈ c10 and u2 ≈ c20. Note that the general solution of Lan-
dau equation of sound [see Eq. (2)] gives these approximate
equalities under the assumption that c10 ≈ cT . This condition
is indeed verified in the low-temperature regime of T/TF =
0.01, as can be seen from the top panel of Fig. 2, where we
plot the adiabatic sound velocity c10, the isothermal sound
velocity cT , and the entropic sound velocity c20. Thus, as a
prediction for the forthcoming experiments, we expect that a
heat probe can easily and almost exclusively excite the second
sound, for which we make a concrete quantitative prediction
in Fig. 1. For the interpretation of future experiments, it is
also useful to plot some relevant thermodynamic quantities
calculated throughout our equation of state. In particular, in
the bottom panel of Fig. 2, we plot the entropy per particle
S/(NkB) and the specific heat at constant volume per particle
cV /(NkB).

We have also calculated the spectral density function,
whose Lorentzian peaks’ width is related to the sound diffu-
sion coefficient Ds. To effectively reproduce the results of the

universal lower bound on Ds [23], our theory should include
higher order terms in the pairing field, especially on the BEC
side of the crossover. Indeed, these terms are responsible
of widening the spectral functions peaks, signaling that the
collective excitations of the pairing field now have a finite
lifetime [47,48].

V. THE ROLE OF THE BKT TRANSITION

The impact on the sound velocities of the BKT-driven
renormalization of the superfluid density is clearly visible
in Fig. 3, where, considering three different values of the
crossover parameter ln(εB/εF ) = {−5, 0,+5}, we plot u1 and
u2 as a function of the temperature T/TF . In every interaction
regime, although with a different qualitative behavior, the
mode u2 disappears discontinuously at the critical temperature
TBKT. In addition, since due to the mixing both sounds depend
on the superfluid density, u1 also is discontinuous in the BEC
regime, as can be seen in the right panel of Fig. 3. The jump
of the first sound becomes more pronounced for larger values
of ln(εB/εF ), as one can expect from purely bosonic works
[14,28], but here we limit to showing interaction regimes
which can be conveniently reached in fermionic experiments
(ln(εB/εF ) � 10; see Ref. [49]). We thus conclude that the
discontinuities of the sound modes can probe the BKT tran-
sition in ultracold Fermi gases [24,25,50]. We also emphasize
that, in the deep BEC limit, our theory provides a reasonable
agreement with the BKT critical temperature obtained with
purely bosonic theories, as we discuss in the next section.

In the insets of Fig. 3 we report the relative contributions
to the density response [see Eq. (4)], whose general behavior
is similar to that of the low-temperature regime, with a slight
dependence on the interaction regime. Indeed, as before, the
amplitude of the second sound W2/(W1 + W2) is practically
zero in the BCS regime and at unitarity. However, in the BEC
regime the mixed response of the system emerges: W2/(W1 +
W2) increases with the temperature up to 0.15, and jumps to
zero in a sharp region around the critical TBKT temperature.
Indeed, at T > TBKT only u1 survives, corresponding to the
standard propagation of sound in a normal fluid.

VI. COMPOSITE BOSON LIMIT

In the deep-BEC limit the fermionic system can be mapped
onto a system of interacting bosons with density nB = nF /2,
mass mB = 2mF and chemical potential μB = 2(μF − εB/2):
the so-called “composite boson” limit; in this section we use
explicit “F” and “B” subscripts to distinguish between bosonic
and fermionic quantities. The bosonic and fermionic scatter-
ing lengths are related by the equation aB = λ aF where λ ≈
0.551 [32]. Therefore, the dimensionless coupling constant of
a 2D Bose gas, gB, is related to the fermionic quantities by the
equation

gB = −4π h̄2

mB

1

2 ln(kF aF ) + ln(λ2/4π )
, (6)

where

ln(kF aF ) = 1

2

[
− 2γ + ln

(
8εF

εB

)]
, (7)
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FIG. 3. First sound velocity u1/vF (red solid line) and second sound velocity u2/vF (blue dashed line) obtained from Eq. (2), plotted in
terms of the rescaled temperature T/TF , for three different values of the crossover parameter: ln(εB/εF ) = −5 (BCS regime), ln(εB/εF ) = 0
(unitary regime), and ln(εB/εF ) = 5 (BEC regime). The slower propagating mode u2 disappears at the critical BKT temperature TBKT. Insets:
relative contribution to the density responses W1,2/(W1 + W2) of u1 (red solid line) and u2 (blue dashed line) for the same three values of the
interaction parameter.

with γ 
 0.557 being the Euler-Mascheroni constant. An-
other quantity which we need to map is the critical
temperature T (B)

BKT of the system of composite bosons. As
before, the superscript B underlines that T (B)

BKT is the critical
temperature of the Bose system to which the fermionic system
in the BEC side of the crossover can be mapped. To identify
the temperature of the transition, quantum Monte Carlo simu-
lations [37,51] of 2D Bose gases provide the universal relation

T (B)
BKT

TF
= 1

2 ln

[
ξ

4π
ln

( π

e−2γ−1/2

εB

εF

)] , (8)

with ξ 
 554 [37].
In current experimental setups the crossover parameter can

reach, at most, values around ln(εB/εF ) ∼ 10 [49]. In this
interaction range, the agreement between the bosonic the-
ory and the composite boson limit is not complete [37]. We
have verified it employing our finite-temperature theory for
ln(εB/εF ) = 10, which, according to Eq. (6), corresponds to
the case of gB 
 1 considered in Ref. [16]. While the critical
temperature is reasonably well reproduced by our theory, the
agreement of the sound velocities with the purely bosonic
theory is only qualitative.

VII. CONCLUSIONS

We have calculated the first and the second sound velocities
for a 2D Fermi gas across the BCS-BEC crossover, deriv-
ing the thermodynamics from the Gaussian pair fluctuations

approach. Similarly to liquid helium, the second sound
vanishes at the Berezinskii-Kosterlitz-Thouless temperature,
where the superfluid component vanishes, heat propagation
becomes purely diffusive, and the system supports only the
usual (first) sound mode. At low temperatures, in accor-
dance with recent experimental evidence, we do not observe
the mixing of pressure-density oscillations and of entropy-
temperature ones: a density probe excites only the first sound.
Our theory reproduces the recently measured values of the
first sound velocity and opens new experimental perspectives:
we expect that a heat probe will excite only the second sound,
for which we offer testable values and predictions, as a van-
ishing velocity in the deep BCS regime. We also discuss the
thermal behavior of the sound modes, showing that, as can
be expected from purely bosonic theories, a mixed response
occurs only at finite temperatures and in the BEC regime, sig-
naling the emergence of a bosonic character from composite
bosons.
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