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We investigate the phenomenon of Bose-Einstein condensation in ideal bosonic gases confined to axially
symmetric surfaces of revolution. The single-particle Schrödinger equation is formulated on a general surface
and then explicitly solved in the ellipsoidal and toroidal geometries to determine the one-body energy spectrum.
We discuss how the curved geometry impacts the quantum statistical properties of ideal Bose gases confined
on these surfaces. Specifically, we observe that Bose-Einstein condensation is suppressed when the surface
aspect ratio is increased and, correspondingly, it becomes highly elongated and acquires a one-dimensional
character. We also evaluate the Bogoliubov excitation spectrum, providing insights into the collective excitations
of the condensate. Our results establish the conditions to achieve quantum degeneracy in curved manifolds, thus
guiding forthcoming experiments with thin shells, and set the basis for solving the few-to-many body problem
in general surfaces of revolution.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) occurs when a macro-
scopic fraction of the particles of a system occupy the same
single-particle state [1]. While BEC was first implicitly ob-
served in superfluid helium, in the context of ultradilute gases
it was experimentally realized in harmonically trapped atoms
[2,3]. Unlike in helium, ultracold gases offer spectacular
control over both interactions and confinement geometries,
enabling studies in various trapping configurations, including
lattices and boxes [4,5]. Notably, various experiments have
realized the confinement of atomic gases in two-dimensional
configurations [6,7], whose dynamics is restricted to zero-
point motion along the strong confinement direction and free
otherwise. Recently, the experimental study of ultracold atoms
in two-dimensional curved geometries has become an emerg-
ing research trend [8–11]. Analyzing the case of an ideal Bose
gas confined to curved surfaces seems particularly intrigu-
ing. In contrast to three dimensions, where a finite critical
temperature exists for Bose-Einstein condensation of an ideal
gas, the Mermin-Wagner theorem [12] forbids condensation
in an infinite two-dimensional plane. However, Bose-Einstein
condensation can still occur in finite-size systems [13], raising
an interesting question about how curved geometries influence
this phenomenon [14].

On the theoretical side, various studies have focused on the
quantum statistics of ultracold atoms confined on spherical
and ellipsoidal shells [15–19]. These investigations pointed
out that the curved confinement changes the energy spectrum
of the system with respect to the analogous flat counterparts,
producing quantitative geometric-dependent corrections to the
system thermodynamics [17,20]. Other studies have shown,

for instance, how the variation of geometric parameters
affects the critical Bose-Einstein condensation temperature
[21–23]. However, we note that so far no analyses of the
Bose-Einstein condensation transition have been conducted
for gases confined in some of the simplest purely two-
dimensional geometries, such as tori and ellipsoidal surfaces.
Analyzing this phenomenon would not only guide their ex-
perimental realizations [8,10,24,25] but also set the basis
for the development of few-body physics in new curved
geometries.

In this paper we discuss the phenomenon of Bose-Einstein
condensation in axially symmetric surfaces of revolution,
elucidating how the curved geometry affects the quantum-
statistical properties in ellipsoids and tori. In particular, we
first formalize the single-particle Schrödinger equation for
generic surfaces of revolution. Then we focus on the specific
cases of the ellipsoid and torus and numerically determine
the one-body energy spectrum and eigenfunctions. This result
allows us to analyze the Bose-Einstein condensation phe-
nomenon and to determine the Bogoliubov energy spectrum
for a gas confined in these manifolds.

Our main result, namely, the suppression of Bose-Einstein
condensation in elongated geometries, can be observed in
experiments with quasi-two-dimensional Bose gases trapped
near curved manifolds. Conveniently, our method can be eas-
ily extended to include the eventual trap inhomogeneities of
experiments with thin ellipsoidal shells [8] and can therefore
support them towards the goal of reaching the condensate
regime. Our results can also guide the forthcoming realization
of Bose-Einstein condensates confined near a toroidal surface
[24,25].
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FIG. 1. Shown on top is an illustration of the system geometry
and the coordinate system parametrizing the axially symmetric sur-
face �. The surface is obtained from the revolution of the curve γ

around the z axis. The bottom shows an illustration of the curves
γ generating the ellipsoidal surface (left) and the toroidal surface
(right) and the respective geometric parameters.

II. SCHRÖDINGER EQUATION ON AXIALLY
SYMMETRIC SURFACES

A single quantum particle moving on the surface � satis-
fies the Schrödinger equation

(T̂ − ε)� = 0, (1)

where T̂ denotes the kinetic energy operator restricted to
the surface, ε is the energy eigenvalue, and � is the unit-
normalized wave function. We assume that the surface � is a
nonintersecting axially symmetric manifold, parametrized by

� = (ρ(θ ) cos ϕ, ρ(θ ) sin ϕ, z(θ )), (2)

where θ ∈ I parametrizes both the distance ρ(θ ) from the
z axis and the z coordinate z(θ ), while ϕ ∈ [0, 2π ] is the
azimuthal angle (see Fig. 1). Note that the surface � is
generated by the revolution of the differentiable curve γ =
(ρ(θ ), 0, z(θ )) along the z axis and its area can be evaluated
through the Guldinus theorem as

S =
∫ 2π

0
dϕ

∫
I

dθ‖∂θ� × ∂ϕ�‖ =
∫ 2π

0
dϕ

∫
I

dθ ρ(θ )t (θ ),

(3)
where t (θ ) = [ρ ′2(θ ) + z′2(θ )]1/2 is the modulus of the tan-
gent vector to γ , with the prime denoting the first derivative.

The Schrödinger equation (1) in these coordinates, for a
particle of mass M = 1 and setting h̄ = 1, reads(

T̂θ + L̂2
z

2ρ2(θ )
− ε

)
�(θ, ϕ) = 0, (4)

where

T̂θ = − 1

2t2(θ )

[
∂2
θ +

(
ρ ′(θ )

ρ(θ )
− t ′(θ )

t (θ )

)
∂θ

]
, L̂2

z = −∂2
ϕ

(5)
results from directly evaluating T̂ in terms of the Laplace-
Beltrami operator (see Appendix A). Due to the rotational
symmetry around the z axis, the angular momentum compo-
nent L̂z is a conserved quantity characterized by the quantum
number m = 0,±1,±2, . . . . The wave function factorizes as
�(θ, ϕ) = ∑

mλ cmλψ
λ
m(θ )eimϕ/

√
2π and substituting this de-

composition in the Schrödinger equation, we obtain(
T̂θ + m2

2ρ2(θ )
− ελ

m

)
ψλ

m(θ ) = 0, (6)

with ελ
m the energy eigenvalue for a certain m indexed by the

real value λ and normalization set to∫
I

dθ ρ(θ )t (θ )|ψλ
m(θ )|2 = 1. (7)

Note that the assumption of purely two-dimensional motion
is applicable for energies ελ

m much smaller than the transverse
confinement energy on the surface �.

The ground-state solution of Eq. (6) has zero quantum
numbers m = λ = 0 and is a nodeless constant function cor-
responding to zero energy,

ψ̄0
0 (θ ) =

√
2π/S, ε̄0

0 = 0, (8)

so that the two-dimensional ground-state wave function reads
�̄0(θ, ϕ) = 1/

√
S (given that cmλ = δm0δλ0).1 All other real

solutions of Eq. (6) constitute the excited-state components
ψλ

m(θ ) and the corresponding spectrum ελ
m of a quantum parti-

cle constrained to move on �. Note that, for any value of the
angular momentum projection m, there are infinite solutions
labeled by the real quantum number λ. These can be obtained
numerically for specified choices of ρ(θ ), z(θ ), and m. In the
following sections, in particular, we will solve the problem in
the ellipsoidal and toroidal cases.

A. Ellipsoidal surface

We parametrize the ellipsoid of semiaxes a and b by
ρ(θ ) = a sin θ and z(θ ) = b cos θ , where θ ∈ I = [0, π ] (see
the bottom of Fig. 1). Substituting these formulas in Eq. (6),
we obtain(

− ∂2
θ

2t2(θ )
− a2 cot θ

2t4(θ )
∂θ + m2

2ρ2(θ )
− λ(λ + 1)

2a2

)
ψλ

m(θ ) = 0,

(9)
where t (θ ) = (a2 cos2 θ + b2 sin2 θ )1/2 and we redefined the
energy as ελ

m = λ(λ + 1)/2a2 to introduce the real quantum
number λ.

Note that Eq. (9) depends only on the ratio b/a be-
tween the semiaxes. In particular, the ellipsoid is oblate for
b/a < 1, is prolate for b/a > 1, and reduces to a sphere for

1The ground-state solution is uniform because we assume a
uniform gas confinement throughout the surface. Trapping inho-
mogeneities producing effective two-dimensional external potentials
can be easily included in the Schrödinger equation.
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b/a = 1. Before proceeding further, we review the spherical
case, whose Schrödinger equation reduces to(

L̂2

2a2
− l (l + 1)

2a2

)
ψ l

m(θ ) = 0, (10)

with L̂2 = −∂2
θ − cot θ ∂θ + m2/ sin θ2 the angular momen-

tum operator and λ ≡ l = 0, 1, 2, 3, . . . the corresponding
integer quantum number. The wave function can be written
explicitly as ψ l

m(θ ) =
√

2π/a2Y l
m(θ, 0) in terms of the spher-

ical harmonics Y l
m(θ, ϕ), with eigenenergies being degenerate

in m.
Let us now consider the general case of an ellipsoid.

The ground state of Eq. (9) has zero energy ε̄0
0 = 0 and

corresponds to a flat nodeless solution ψ̄0
0 (θ ) = √

2π/S,
where S = 2πa2[1 + (1 − e2)arctanh(e)/e] is the area of the
ellipsoid and e2 = 1 − b2/a2 is the eccentricity. Since no ana-
lytical solution is known for the excited states, we numerically
solve Eq. (9) to find the energy levels as a function of the
ratio b/a. The obtained results for the quantum number λ

are presented in Fig. 2, while the eigenfunctions up to m = 2
are shown in Appendix B. In the spherical case λ assumes
the integer values 0, 1, 2, 3, . . . and can be interpreted as the
quantum number of total angular momentum, with degenerate
eigenenergies corresponding to different m. Such degeneracy
is lifted in the ellipsoidal case, and in particular the values
of λ are shifted up in the oblate case (b < a), while they are
shifted down in the prolate case (b > a). Note that the shift is
maximal for the m = 0 state and decreases in magnitude for
higher |m| values.

We also develop a perturbation theory to evaluate the en-
ergy shift with respect to the spherical case. In particular, we
expand the Schrödinger equation (9) to first order in the small
parameter e2 = 1 − b2/a2, obtaining(

L̂2 − e2L̂2′

2a2
− ελ

m

)
ψλ

m(θ ) = 0, (11)

where L̂2′ = sin2 θ∂2
θ + sin(2θ )∂θ , and the linear-order ex-

pressions for the wave function and the energy are
given by ψλ

m(θ ) = ψ l
m(θ ) − e2ψλ′

m (θ ) and ελ
m = εl

m − e2ελ′
m .

The unperturbed e2 = 0 problem is solved by ψ l
m(θ ) =√

2π/a2Y l
m(θ, 0) and has energy εl

m = l (l + 1)/2a2, while
the first-order correction to the (l, m) state energy is obtained
by projecting Eq. (11) over the unperturbed wave functions
and neglecting (e2)2 terms. This operation yields

λ = l − e2 2π

2l + 1

∫ π

0
dθ sin θ Y l∗

m (θ, 0)L̂2′Y l
m(θ, 0). (12)

We compare the linear-order result with the exact calculation
in the bottom panels of Fig. 2, finding good agreement. Note
that the linear-order formula can also be calculated analyt-
ically by using the recurrence properties of the associated
Legendre polynomials [26].

B. Toroidal surface

The torus can be parametrized by great (R) and small
(r) circle radii as ρ(θ ) = R + r cos θ and z(θ ) = r sin θ , with
θ ∈ I = [0, 2π ] (see the bottom of Fig. 1). Substituting this

(a)

(b) (c)

(d) (e)

FIG. 2. (a) Single-particle spectrum on the ellipsoidal surface,
represented in terms of the quantum number λ, versus the aspect ratio
b/a. Note that λ is the ellipsoidal-case analogous of the total angular
momentum of a particle on the sphere, and breaking the spherical
symmetry removes the level degeneracy in m. The values of |m| are
indicated in the legend. (b)–(e) Magnifications of (a) around sets of
increasing values of λ. The black solid lines show the prediction of
Eq. (12), obtained with first-order perturbation theory in the small
parameter e2 = 1 − b2/a2.

parametrization in Eq. (6) gives

(
− ∂2

θ

2r2
+ sin θ

2rρ(θ )
∂θ + m2

2ρ2(θ )
− λ2

2r2

)
ψλ

m(θ ) = 0, (13)

where we define λ2 = 2r2ελ
m and impose periodic boundary

conditions ψλ
m(θ ) = ψλ

m(θ + 2π ). Note that Eq. (13) only de-
pends on the ratio of the radii r/R. This aspect ratio is the only
geometric parameter characterizing the torus surface, which
evolves from a minimal nonintersecting doughnut-shaped
form (r/R = 1) to a long cylinderlike surface (r/R � 1).

Let us first solve the problem in the cylindrical limit
of r/R → 0, in which ρ(θ )/r → ∞. In this limit, the
Schrödinger equation simplifies to (−∂2

θ − l2)ψ l
m(θ ) = 0 with

λ ≡ l = 0,±1,±2, . . . labeling the angular momentum of
the particle rotating along the small circle. The analytical
wave function is, in this case, given by ψ l

m(θ ) ∝ eilθ and the
eigenenergies are εl

m = l2/2r2. Note that the dependence on
m disappears since, in the cylindrical limit, the energy scale
proportional to 1/R2 associated with the rotation along the z
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FIG. 3. Single-particle spectrum λ (related to the energy as ελ
m =

λ2/2r2) on the torus surface versus the ratio r/R for |m| = 0, . . . , 4
(same colors as in Fig. 2). In the limit r/R → 0, the spectrum of
a particle on a ring of radius r is reproduced, which is doubly
degenerate in ±l (see the text for details). Outside the ring regime,
these energies split.

axis vanishes in front of the kinetic energy εl
m ∝ 1/r2 along

the r ring.
We now solve the problem for arbitrary values of the major

R and minor r radii. The ground-state solution has energy
ε̄0

0 = 0 and wave function ψ̄0
0 (θ ) = √

2π/S, with S = 4π2Rr
the torus area. The solution of Eq. (13) for the excited states
is obtained numerically and the resulting energy spectrum
is reported in Fig. 3, while the eigenfunctions up to m = 2
are shown in Appendix B. In particular, for any values of
r/R and m, we obtain a ladder of excited states labeled by
the real number λ > 0. These excited states are always sep-
arated by a gap from the ground-state energy. We observe
that, from r/R ∼ 0.5 and as r/R → 0, couples of adjacent λ

values corresponding to the same m get closer and completely
merge when r/R = 0. At r/R = 0 these solutions correspond
to degenerate states with quantum numbers +l and −l . It is
evident that the degeneracy of these levels is lifted by the
curvature of the torus (see also Fig. 7 in Appendix B).

III. BOSE-EINSTEIN CONDENSATION

Let us now discuss how Bose-Einstein condensation is
affected by the axially symmetric geometry. We examine a
gas of N noninteracting bosons confined on the manifold �,
assuming that the system is in thermal equilibrium at temper-
ature T and has a chemical potential μ. The total number of
atoms can be expressed as

N = N0 + NT , (14)

where the particle occupation numbers of the condensate and
of the thermally excited states are given by

N0 = 1

e(ε̄0
0 −μ)/T − 1

, NT =
∑
mλ

1

e(ελ
m−μ)/T − 1

(15)

and we set the Boltzmann constant to kB = 1.
Although Bose-Einstein condensation does not occur at

T > 0 in infinite two-dimensional systems, it can still occur

FIG. 4. Shown on top is the critical temperature
T̃ = kBTBEC/(h̄2n/M ) versus N = nS for different aspect ratios in
an ellipsoid with 0.1 < b/a < 10. The color bar indicates the values
of b/a and r/R and in particular the curves correspond to nine
equally spaced values of b/a in [0.1, 0.9]. Shown on the bottom is
the condensate fraction of a gas of N = 104 particles confined on
the ellipsoidal surface versus the aspect ratio for various temperature
values T̃ (color bar). For clarity, dimensionful units are reintroduced
for T̃ .

in finite-size ones. In particular, an ideal Bose gas confined
on the compact surface � condenses in the single-particle
ground state �̄0 if its coherence length scale is larger than the
system size. In terms of the chemical potential, the coherence
criterion can be formulated as |μ| < h̄2/2MS [27], with S the
surface area. We verify a posteriori that this condition holds.

Let us define the temperature TBEC, below which a fraction
of atoms start to occupy the condensate state significantly,
by setting μ ≈ ε̄0

0 = 0 in Eqs. (14) and (15) and assuming
a fully depleted condensate N0 → 0. The resulting relation
N = ∑

mλ(eελ
m/TBEC − 1)−1 can be evaluated numerically to get

TBEC versus N for a given geometry. We present the results
by rescaling the temperature as T̃BEC = kBT/(h̄2n/M ), where
h̄2n/M corresponds to the critical temperature of an ideal Bose
gas in a square flat box up to corrections scaling as log N [15].

Our results for the ellipsoid are shown in Fig. 4 and those
for the torus in Fig. 5. The top panels depict T̃BEC versus N for
different aspect ratios. We first note that, in agreement with the
Mermin-Wagner theorem [12], T̃BEC of both geometries tends
logarithmically to zero when fixing the density n and taking
the thermodynamic limit S → ∞. Concerning the ellipsoid,
we see that T̃BEC decreases as the aspect ratio b/a is increased.
This geometric suppression of Bose-Einstein condensation
is due to the change of geometry from a highly oblate
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FIG. 5. Shown on top is the critical temperature kBTBEC/(h̄2n/M )
versus N = nS for different aspect ratios in a torus with 0.1 < r/R <

0.999. The color bar indicates the value of r/R and in particular the
curves correspond to 16 values of r/R distributed as sinh2(r/R) in
[0.1, 0.999]. Shown on the bottom is the condensate fraction of a gas
of N = 104 particles confined on the torus surface versus the aspect
ratio for various temperature values T̃ (color bar). Dimensionful
units are reinserted in T̃ for clarity.

(pancake-shaped) surface for b/a � 1 to a highly prolate
(cigar-shaped) surface for b/a � 1. The oblate geometry ex-
hibits a more two-dimensional character, while the prolate
geometry tends towards a one-dimensional manifold. For the
torus, similarly, we observe that Bose-Einstein condensation
is disfavored as r/R decreases. In this case, the torus evolves
from a doughnut-shaped surface with a two-dimensional
character (r/R = 1) to a long, thin cylinder with periodic
boundaries (r/R � 1) exhibiting a one-dimensional behavior.
As a result, we also find that the specific eigenenergies distri-
bution of the torus surface produces a slightly nonmonotonic
behavior of T̃BEC. This subtle effect is ultimately determined
by the energy-level distribution.

With our estimates of T̃BEC, the residual condensate
fraction at T̃ > T̃BEC is neglected. Going beyond this approxi-
mation requires the self-consistent evaluation of Eqs. (14) and
(15), yielding the condensate fraction N0/N for a given num-
ber of atoms N , temperature T , and geometry. We calculate
N0/N and show our results in the bottom panels of Figs. 4
and 5.

The ellipsoid condensate fraction vanishes quickly with
temperature when b/a � 1, while it tends to zero more slowly
when b/a � 1. This qualitative difference in the behavior
of N0/N agrees with the geometric suppression of T̃BEC in
elongated surfaces. Note that N0/N is not analytical around

b/a = 1. At that point, the excited energy levels cross (see
the bottom panels of Fig. 2) and their occupations exhibit
nonanalytic behavior in b/a, reflected in the discontinuity of
the slope of N0/N at b/a = 1. For the torus, similarly, the
condensate fraction vanishes more slowly as r/R → 0. In ad-
dition, N0/N displays a faint maximum at intermediate values
of r/R, which is what produces the nonmonotonic behavior
T̃BEC.

The validity of our theory is verified by checking a poste-
riori that the relation |μ| < h̄2/2MS [27] holds in the regimes
reported in the figures. Moreover, we calculate the flat-case
g2 correlation function at distances corresponding to the el-
lipsoid and torus sizes and find that it decays at temperatures
T � TBEC.

IV. BOGOLIUBOV SPECTRUM ON AXIALLY
SYMMETRIC SURFACES

Our formalization of the single-particle problem provides
insight also into the many-body properties of the system. For
instance, the formal solution of Eq. (6), allows us to calculate
the Bogoliubov excitation spectrum of a weakly repulsive
bosonic gas confined on the axially symmetric surface �. The
Bogoliubov approach, inherently linked to the structure of
the single-particle spectrum, accurately describes only weak
interactions. Beyond this regime, nonlinear phenomena such
as swallow-tail structures [28,29] of the excitation spectrum
may emerge, potentially induced by the interplay of stronger
interactions with periodic boundary conditions.

Let us describe the condensate via the time-dependent
Gross-Pitaevskii equation (GPE) for the field �(θ, ϕ, t ),

i∂t�(θ, ϕ, t ) = [T̂ + g|�(θ, ϕ, t )|2]�(θ, ϕ, t ), (16)

where g is the effective two-dimensional interaction strength.
This GPE can be derived via a dimensional reduction pro-
cedure from the mean-field action of a three-dimensional
gas strongly confined near the surface �. In particular (see
Refs. [16,19,30]), one assumes that the trapped condensate
has a Gaussian profile perpendicular to the manifold �. Equa-
tion (16) is then obtained by assuming a uniform Gaussian
thickness and neglecting the geometric potential [16,19,30].
The uniform thickness in particular allows us to assume a
constant interaction strength g throughout the surface, and its
experimental implementation is thus necessary to ensure the
applicability of our result.

The Bogoliubov spectrum is obtained by linearizing
Eq. (16) according to the standard Bogoliubov theory.
In particular, we expand the field �(θ, ϕ, t ) around the
macroscopically occupied single-particle condensate state as
�(θ, ϕ, t ) = [

√
N�̄0 + η(θ, ϕ, t )]e−iμt , where η is a complex

fluctuation field and the chemical potential is, at the lowest
order, μ = gn0, with n0 = N |�̄0|2 = N/S. By substituting this
decomposition in the GPE and linearizing the result, we obtain

i∂tη(θ, ϕ, t ) = [T̂ + 2gn0 − μ]η(θ, ϕ, t ) + gn0η
∗(θ, ϕ, t ).

(17)
We then expand the fluctuation field

η(θ, ϕ, t ) = uλ
mψλ

m(θ )eimϕeiEλ
mt − vλ

mψλ
m(θ )e−imϕe−iEλ

mt (18)
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in terms of noninteracting Bogoliubov quasiparticles of en-
ergy Eλ

m and substitute it in Eq. (17). We note that eventual
degeneracies in the single-particle levels (for instance, the
one in ±m) will correspond to degeneracies of the Bo-
goliubov modes. The analogous observation holds for a
gas in a three-dimensional cubic box, where degenerate
single-particle states labeled by momenta with equal mag-
nitude but different directions yield the same Bogoliubov
energy. Finally, applying Eq. (6) and separating the result-
ing equation into negative- and positive-energy eigenmodes,
we arrive at a system of Bogoliubov–de Gennes equations,
which can be diagonalized to get the energy spectrum Eλ

m =√
(ελ

m + 2gn0 − μ)2 − (gn0)2. We substitute the lowest-order
approximation of the chemical potential μ = gn0, obtaining
the Bogoliubov spectrum

EB =
√

ελ
m

(
ελ

m + 2gn0
)
. (19)

Note that, given the numerical single-particle energies for the
axially symmetric surface �, one can order them in increasing
order and obtain the Bogoliubov spectrum numerically for
different values of the interaction strength.

In general, the distribution of the Bogoliubov energy
modes can be categorized into two qualitatively different
regimes of low and high energy. The low-energy excitations,
whose wavelength is comparable to either the local curvature
radius or the system size, are sensitive to the curved geom-
etry. Instead, the high-energy excitations that correspond to
wavelengths much smaller than both the local curvature radius
and the system size are not affected by the curvature. Their
statistical distribution is similar to that of a gas in the two-
dimensional flat geometry. This difference, depending on the
specific choice of the axially symmetric surface �, can cause
quantitative changes in the quantum statistical properties of
the interacting system.

Let us now discuss our results in view of the applicabil-
ity to ellipsoidal shell-shaped gases. Interatomic interactions
are expected to play a minor role in the currently avail-
able experimental regimes [8], but future experiments may
be able to reach higher atomic densities and observe the
Bogoliubov spectrum of Eq. (19). In addition, interparticle
interactions allow superfluidity, thus raising the question of
how Bose-Einstein condensation interplays with the super-
fluid Berezinskii-Kosterlitz-Thouless transition in a curved
finite-size geometry. This analysis, already conducted in the
spherical case [21], is expected to be more complex in the
cases of ellipsoids and other generic geometries due to the
tensorial nature of the superfluid order parameter for surfaces
of nonconstant curvature [31]. This interesting problem is left
for future investigations.

V. CONCLUSION

We have studied the influence of the curved geometry on
the energy spectrum in axially symmetric surfaces, focusing
on the experimentally relevant cases of an ellipsoid and a
torus. In particular, we formulated the one-body problem for
a quantum particle confined on axially symmetric manifolds
and applied it to both geometries. We showed that, while the
spectrum is degenerate in the specific limits of the sphere

and the cylinder, the degeneracy is lifted in the general case.
Therefore, the geometric parameters significantly influence
the one-body physics of the system. Furthermore, we analyzed
ideal Bose-Einstein condensation, discussing how the critical
temperature and the condensate fraction are affected by the
geometric crossover between two-dimensional-like surfaces
and elongated one-dimensional-like manifolds.

Concerning possible applicability to the experiments, we
emphasize that, while two-dimensional ellipsoidal shells were
obtained in the thermal regime [8], the challenge of observing
two-dimensional condensate shells is still open. Our work
addresses this regime and can be easily extended to include
one-body external potentials that model trapping inhomo-
geneities. The theory of ideal Bose-Einstein condensation is
also useful for quantitative predictions, since interactions are
expected to have a minor effect on the typical atom numbers
of the experiments [8]. Beyond this, our calculation of the
Bogoliubov spectrum enables future investigations of the in-
terplay between Bose-Einstein condensation and superfluidity
in various curved geometries. Finally, we mention that the
one-body framework developed in this paper can be extended
to address the few-body problem in generic axially symmetric
surfaces.
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APPENDIX A: EVALUATION OF THE KINETIC
ENERGY OPERATOR

We express the kinetic energy operator in the coordinates
u = (θ, ϕ) in the form T̂ = −�/2. In particular, � is the
Laplace-Beltrami operator, i.e., the Laplacian in the system

of curved coordinates u. It is defined as

� = 1√
g
∂i(

√
ggi j∂ j ), (A1)

where ∂i = ∂ui , the metric tensor is defined as gi j = ∂i� ×
∂ j� and its inverse as gi j = (gi j )−1, and the determinant g =
det(gi j ).

The Schrödinger equation (9) is obtained by evaluating
explicitly the above operator for the chosen parametrization
of the surface �. In particular, the diagonal matrix gi j is given
by

gi j =
(

t2(θ ) 0
0 ρ2(θ )

)
, (A2)

so that
√

g = ρ(θ )t (θ ), and the surface area of the mani-

fold is simply given by S = ∫ 2π

0 dϕ
∫

I dθ
√

g, coinciding with
Eq. (3).

APPENDIX B: SINGLE-PARTICLE EIGENFUNCTIONS

We report the eigenfunctions ψλ
m(θ ) of the single-particle

Schrodinger equation in Fig. 6 (ellipsoid) and in Fig. 7 (torus).
In particular, we fix the angular momentum projection along
the z axis to m = 0, 1, 2 (first, second, and third rows) and
show the four lowest-energy states for each m value. The color
coding of the lowest eigenstate matches the one of Figs. 2

FIG. 6. Eigenfunctions of a particle on the ellipsoidal surface. From left to right, the values of b/a correspond to a pancake-shaped ellipsoid,
a sphere, and a cigar-shaped ellipsoid. The rows correspond, from top to bottom, to the values of m = {0, 1, 2}. Note that the m = 0 manifold
includes the uniform ground state and the excited states with zero derivatives at the ellipsoidal poles θ = 0, π , while all m > 0 manifolds
include eigenfunctions vanishing at the poles. Increasingly excited states correspond to darker color shades and shorter dashes.
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FIG. 7. Eigenfunctions of a particle on the toroidal surface. From left to right, the values of r/R span surfaces going from cylinderlike to
doughnut shaped. The rows correspond, from top to bottom, to the values of m = {0, 1, 2}. In the cylinder limit (r/R → 0) the eigenfunctions
tend to harmonic functions with an increasing number of nodes. Increasingly excited states correspond to darker color shades and shorter
dashes.

and 3. The excited-state number for each m value increases
with darker color shades and shorter dashes.

The wave functions of particle on the ellipsoid spread
throughout the surface when b/a � 1 (pancake-shaped el-
lipsoid). Instead, when b/a � 1 (cigar-shaped ellipsoid), the
m > 0 excited modes squeeze and tend to occupy the region
around the ellipsoid equator θ = π/2.

The wave functions of a particle on the torus can be in-
terpreted in comparison with the cylinder case (r/R = 0),
while outside this limit the same must follow by continuity.
We recall that the eigenfunctions for r/R = 0 take the m-
independent form proportional to ψ l

m(θ ) ∼ eilθ , with integer
l and energy degeneracy for equal |l| values. Degenerate
eigenstates of the one-dimensional Schrödinger equation can

be always combined to get real eigenfunctions [33], resti-
tuted by our numerical matrix-diagonalization routine. In
particular, linear combinations of the degenerate states for
l = ±1,±2, . . . produce the series of harmonic functions
sin θ, cos θ, sin(2θ ), cos(2θ ), . . . . Although the degeneracy
is lifted when r/R > 0, this pattern is still recognizable for
r/R = 0.1. Indeed, on top of the uniform l = 0 solution, we
find eigenfunctions similar to the series of harmonic func-
tions. These wave functions have, as expected, nodes near
|l|θ = ±π/2 + 2πc (for cosinelike eigenstates) or nodes near
|l|θ = 2πc or |l|θ = π + 2πc (for sinelike eigenstates), with
integer c. When r/R increases, the almost-degenerate energy
levels further split and the differences in the corresponding
eigenfunctions become more evident.
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