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2 CNR-INO, via Nello Carrara, 1-50019 Sesto Fiorentino, Italy
3 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, via Marzolo 8, 35131 Padova, Italy
∗ Author to whom any correspondence should be addressed.

E-mail: koichiro.furutani@phd.unipd.it

Keywords: sound mode, Bose superfluid, Berezinskii–Kosterlitz–Thouless transition

Abstract
We theoretically investigate sound modes in a weakly-interacting collisional Bose gas in D
dimensions. Using the Landau’s two-fluid hydrodynamics and working within the Bogoliubov
theory, we observe the hybridization of the first and second sound modes for D � 2. To model the
recent measurements of the sound velocities in 2D, obtained in the weakly-interacting regime and
around the Berezinskii–Kosterlitz–Thouless transition temperature, we derive a refined calculation
of the superfluid density, finding a fair agreement with the experiment. In the 1D case, for which
experimental results are currently unavailable, we find no hybridization, triggering the necessity of
future investigations. Our analysis provides a systematic understanding of sound propagation in a
collisional weakly-interacting Bose gas in D dimensions.

1. Introduction

The low-temperature physics of quantum liquids, whose study ranges from the seminal experiments of
Kapitza with liquid helium [1] to the developments in the field of ultracold quantum gases [2, 3], is
constructed on the paradigm of superfluidity. This quantum mechanical phenomenon, usually defined as
the capability of a quantum liquid to ‘flow without friction’ through narrow capillaries, has important
observable consequences on the dynamical properties of quantum liquids. As a corollary, the study of
dynamical phenomena, for instance the propagation of sound, provides nontrivial information on the
superfluid character of the system, and on its thermodynamical and near-to-equilibrium properties.
Specifically, depending on the physical regime defined by the parameter ωτ , where ω is the sound-wave
frequency, and τ is the mean time between each collision, sound propagation occurs in different qualitative
ways.

When ωτ � 1 the collisions between the atoms are rare and the propagation of collisionless sound
originates from the mean-field interaction of the fluid. Historically, Andreev and Khalatnikov studied the
propagation of sound in this regime [4], explaining previous experiments with liquid 4He [5], but more
recently, collisionless sound has been the object of renewed experimental and theoretical interest in
two-dimensional ultracold atomic gases [6–8].

In this work, however, we will focus on the propagation of sound in collisional superfluid Bose gases,
and we will consider the collisional regime of ωτ < 1. In this case, the hydrodynamic properties of a
D-dimensional Bose gas can be described with Landau and Tisza two-fluid model [9, 10], in which the
quantum fluid is described as a mixture of a normal component and a superfluid component. While the
normal part of the fluid is viscous, the superfluid one flows without friction and does not carry entropy. As
a consequence in the near-to-equilibrium dynamics, due to the existence of these two macroscopic degrees
of freedom, a second sound mode appears alongside the ‘usual’ first one. While the two-fluid model is a
general framework, valid both in bosonic and fermionic systems, and in different spatial dimensions, the
microscopic mechanisms underlying the qualitative and quantitative physical description of the first and
second sound are system-dependent.
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Due to the large isothermal compressibility of a 3D weakly-interacting Bose gas, and a similar behaviour
is expected to occur in a 2D Bose gas [11], the first and second sound modes hybridize [12–16]. This
phenomenon reveals the inversion of the role of density and entropy oscillations in the propagation of first
and second sound: their contribution to the sound modes exchange when the finite hybridization
temperature is crossed.

In 2D Bose gases, the Mermin–Wagner theorem [17, 18] rules out the occurrence of long-range order at
finite temperature, nonetheless the superfluid density can be finite at temperatures below the
Berezinskii–Kosterlitz–Thouless (BKT) critical temperature, TBKT [19–22]. Therefore, the proliferation of
free vortices at T > TBKT which leads to a jump of the superfluid density [21], results also in the
discontinuity of both first sound and second sound velocities. In the vicinity of the BKT transition
temperature, an analysis based on universal relations (UR) in two-dimensional Bose gases [23–27] is a valid
description of this behaviour. Indeed, it has succeeded in predicting the sound velocities quantitatively in
the temperature regime near TBKT [28–30]. Compared to the 3D and 2D cases, there is few investigation of
the first and second sound velocities at finite temperature in 1D. To obtain meaningful results in this case,
which deserves a detailed analysis, it is important to establish in which temperature regime a hydrodynamic
description is reliable.

In this paper, we systematically investigate the low-temperature behaviour of sound velocities in a
D-dimensional weakly-interacting Bose gas. Utilizing the two-fluid hydrodynamics and the Bogoliubov
theory, we compute the sound velocities in a collisional Bose gas in D = 1, 2, 3. We find that the
hybridization, which has been predicted theoretically in a 3D Bose gas [12, 13, 16], can occur for D � 2. In
particular, to obtain reliable results near TBKT in 2D, we calculate the renormalized superfluid density by
developing an improved approach based on Popov theory. Our theoretical results are, in this case, in
reasonable agreement with the experimental measurements of reference [30]. In the 1D case, the calculation
of the sound velocities do not exhibit any hybridization and our quantitative predictions await experimental
confirmations.

2. Thermodynamic quantities of a D-dimensional Bose gas

We start from the Helmholtz free energy of a weakly-interacting D-dimensional Bose gas, which, including
the quantum correction at zero temperature, reads (we set � = kB = 1 throughout this paper)

F = F0 + FQ + FT

=
g

2

N2

LD
+

1

2

∑
p

Ep + T
∑

p

ln
[

1 − e−Ep/T
]

,
(1)

where F0 is the mean-field zero-temperature free energy with g is the Bose–Bose interaction strength, N is
the total number of identical bosons confined in a hypercube of side L and hypervolume LD. FT is the
low-temperature free energy with T is the absolute temperature and

Ep =

√
p2

2m

(
p2

2m
+ 2gn

)
, (2)

is the Bogoliubov spectrum where n = N/LD is the D-dimensional number density and m is the mass of the
atoms. We define a gas parameter in D dimension as

η ≡ mgn1−2/D

2π
, (3)

which is indeed identical to gn/[Tcζ(D/2)2/D] for D = 3 where Tc is the critical temperature in the
noninteracting case. The quantum correction FQ in the free energy is obviously ultraviolet divergent and
requires a regularization procedure. Dimensional regularization [31] for each spatial dimension leads to

FQ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L3 8

15π2
m3/2

(
gn
)5/2

(D = 3),

−L2 m

8π

[
ln

(
εΛ
gn

)
− 2

η

] (
gn
)2

(D = 2),

−L
2

3π
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(
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)3/2

(D = 1),

(4)

where εΛ = 4e−2γ−1/2/
(
ma2

2D

)
� gn [32] is a cutoff energy for D = 2 and γ = 0.577 . . . is the

Euler–Mascheroni’s constant. The 2D s-wave scattering length a2D is related to the 2D coupling constant
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as [31, 33]

g =
2π

m

1

ln
(
2/ (eγka2D)

) , (5)

within the Born approximation, and, substituting k = π/L, one can obtain

εΛ
gn

=
π

2N

e2/η−1/2

η
. (6)

The pressure P is obtained as

P = −
(

∂F

∂LD

)
N ,T

. (7)

Other thermodynamic quantities can be obtained as well from the Helmholtz free energy in equation (1).
The entropy per mass unit s and the specific heat at constant volume cV are given by

s =
1

m

(
∂

∂T

F

N

)
ρ

, cV = T

(
∂s

∂T

)
ρ

, (8)

where ρ = mn denotes the mass density.

3. Landau’s two-fluid model

The calculation of the thermodynamic functions is usually based on microscopic derivations, as the one
outlined in the previous section, that depend on the specific system and on its physical regimes. Landau’s
two-fluid model, in which the system is described as a mixture of a viscous normal fluid and a non-viscous
superfluid, is however a general theoretical framework to describe the hydrodynamic properties of quantum
liquids. Within this model, the first sound velocity u1 and the second sound velocity u2 (� u1) are the
solutions of the following biquadratic equation [9]

u4 −
(
v2

A + v2
L

)
u2 + v2

Tv
2
L = 0, (9)

where we define the isothermal, adiabatic, and Landau velocity, respectively, as [9, 34]

vT =

√(
∂P

∂ρ

)
T

, vA =

√(
∂P

∂ρ

)
s

, vL =

√
ρsTs2

ρncV
, (10)

and the total mass density ρ = mn = ρn + ρs is the sum of the normal mass density ρn and the superfluid
mass density ρs. Note that the Landau velocity vL defined here corresponds to the velocity of a pure entropy
wave.

The thermodynamic quantities in equation (10) depend on the system considered: here we implement
their calculation following the Bogoliubov theory introduced in the last section, which describes a
weakly-interacting Bose gas in D dimensions. Moreover, we calculate the normal mass density as [9, 10]

ρn = − 1

D

∫
dDp

(2π)D
p2 dnB(Ep)

dEp
, (11)

which, for a noninteracting gas with g = 0, reduces to the total mass density ρn = ρ and the superfluid

fraction vanishes. In equation (11), nB(E) =
[
eE/T − 1

]−1
is the Bose distribution function.

Denoting P̄ as the pressure contribution which includes the mean-field plus the thermal one, and PQ as
the quantum correction, one can obtain

vT =

√(
∂
(
P̄ + PQ

)
∂ρ

)
T

=
√
v̄2

T + v2
Q, (12)

where v̄T is the isothermal velocity within the mean-field theory and

v2
Q ≡

(
∂PQ

∂ρ

)
T

, (13)

is the beyond-mean-field correction to the isothermal velocity. Since FQ is the zero-temperature free energy,
it does not affect the Landau velocity vL and the quantum correction to the adiabatic velocity is identical to
that to the isothermal one as

vA =
√
v̄2

A + v2
Q, (14)
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Figure 1. The beyond-mean-field correction to the isothermal and adiabatic velocity v2
Q for D = 1, 2, 3. The horizontal axis is

the gas parameter η = mgn1−2/D/ (2π). For D = 2, the number of particles is set to N = 104.

where v̄A is the adiabatic velocity within the mean-field theory. The explicit expressions of the quantum
correction v2

Q are given by

v2
Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2(2πη)3/2

π2
v2

B (D = 3),

−η

2

[
ln

(
εΛ
gn

)
− 2

η
− 1

2

]
v2

B (D = 2),

−
√

η

2π
v2

B (D = 1),

(15)

where the Bogoliubov velocity reads vB =
√

gn/m. Figure 1 represents the quantum correction v2
Q to the

gas parameter η in each dimension. One can see that v2
Q vanishes as η → 0 in any dimension. The quantum

correction v2
Q is positive in 3D while it is negative in 1D. In 2D, it is positive for η > π/ (2eN) and in the

thermodynamic limit N →∞, one can assume v2
Q > 0.

Our theoretical framework is reliable in physical regimes where the hydrodynamic description of the
system is valid. In particular, it is necessary that ωτ � 1 with τ is the collisional time and ω � vBk is the
frequency of the excited phononic mode. The collisional time is given by

τ ∼ lmfp

vth
∼ 1

nσvth
, (16)

where lmfp ∼ 1/(nσ) is the mean-free-path and vth =
√

2T/m is the thermal velocity. For D = 3, the
cross-section is given by σ = 4πa2 = m2g2/(4π), which leads to

ωτ ∼ N− 1
3
η−2

√
2t
. (17)

Equation (17) indicates that our hydrodynamic description is valid at high temperature, for a large gas
parameter, or for a large number of particles. Taking into account the Bogoliubov theory under the
low-temperature approximation we employed, our theory would be valid under low temperature, small gas
parameter, and a large number of particles. The cross-section for D = 2 is given by σ ∼ (2πη)2/(mvth) and
the adimensional collisional time is independent of the temperature as

ωτ ∼ 1

2
√

2πN
η−

3
2 . (18)

Equation (18) indicates that the hydrodynamic description for D = 2 is valid for a large gas parameter or a
large number of particles. As in 3D case, working with the Bogoliubov theory under the low-temperature
approximation, our 2D theory is valid under the conditions of low temperature, small gas parameter, and a
large number of particles. In the experimental observation reported in reference [30], the gas parameter and
the number of particles are η � 0.10 and N � 2178 respectively, and one obtains ωτ � 0.13, in which our
hydrodynamic description is reliable.

3.1. Three-dimensional Bose gas
Let us discuss the propagation of the first sound and second sound in D = 3. The velocities of these modes
are shown in figure 2, where the temperature is rescaled as t = T/(gn). Note that, in the left panel of
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Figure 2. Results of sound velocities in a weakly-interacting Bose gas for D = 3 and η = 0.1 (panel (a)) and the comparison
with the first and second sound velocity in reference [16] for η = 0.02 (panel (b)). The horizontal axis is the reduced
temperature t = T/(gn). Inset of panel (a): the hybridization of the first sound and second sound modes. The dotted lines
represent the results for η = 0.2. The dotted lines in panel (b) represent the results of reference [16].

figure 2, we set the gas parameter to η ≡ mgn1/3/(2π) = 0.1. At T = 0, as discussed in appendix A, we
reproduce the well-known result:

u1 = v̄T = v̄A = vB, u2 = vL =
vB√

3
, (19)

which is given by the mean-field theory. Around t = 0.6, it exhibits a hybridization of the two sound modes
with a small gap, which has been pointed out by references [12–16] for a weakly-interacting 3D Bose gas.
This phenomenon can be interpreted by using the thermal expansion coefficient α ≡ −ρ−1

(
∂ρ/∂T

)
P

=
(
v2

A/v
2
T − 1

)
/T in the following way. In the incompressible regime αT � 1, the biquadratic Landau

equation of equation (9) gives u1 = vA and u2 = vL, which indicates that the first sound and second sound
mode correspond to the density mode and the entropy mode respectively. The hybridization temperature
thyb characterizes this incompressible regime as t � thyb. Experimentally, above the hybridization
temperature, the second sound can be probed by a density perturbation while only the first sound can be
probed below the hybridization temperature since the second sound corresponds to the entropy mode
uncoupled from the density oscillation. At higher temperature than the critical temperature at which the the
Landau velocity vanishes, one can check that the first sound velocity coincides with the adiabatic one
u1 = vA. The inset of the left panel shows the first sound and second sound velocities for η = 0.1 and
η = 0.2. It exhibits that a larger gas parameter opens the gap larger as η3/4 [16]. In 3D, the hybridization
occurs for any gas parameters.

The dotted, dashed, and dotted-dashed line in the left panel of figure 2 indicate the isothermal,
adiabatic, and Landau velocity for D = 3 respectively. The normal density fraction ρn within the Landau’s
prescription does not include effects of interactions among elementary excitations and is a low-temperature
approximation. In addition, the Bogoliubov theory is not applicable at high temperature regime comparable
with Tc, so that the critical temperature at which ρs vanishes cannot exactly coincide with the superfluid
phase transition temperature Tc [16].

We can also qualitatively reproduce the results of reference [16] as shown in the right panel of figure 2
while our framework ignored the Lee–Huang–Yang correction [35], which is included in reference [16].
Since reference [16] employed perturbation theory based on Beliaev diagrammatic technique at higher
temperature region for better prediction, we find deviations in this region.

3.2. Two-dimensional Bose gas
The superfluid properties of a 2D Bose gas are crucially different from those of the 3D case due to the
phenomenology of the BKT transition [19–21]. The theoretical framework developed in section 2, where
the topological excitations of the bosonic fluid are not taken into account, cannot describe the BKT
transition. These excitations are responsible for the universal jump of the superfluid density at BKT
transition temperature, TBKT. To include it in our theory, we employ the KT-Nelson’s formula [21]

π

2m2
ρs = TBKT, (20)

which determines the BKT transition temperature TBKT. The superfluid density ρs in equation (20) is
calculated from the Landau formula given in equation (11). A good approximation in an infinite-size
weakly-interacting system is to set to zero the superfluid density fraction for T � TBKT.

We show the sound velocities in a 2D Bose gas in figure 3. Due to the jump of the superfluid density at
t = tBKT, the first sound and second sound velocity exhibit discontinuities. One can see that the
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Figure 3. Results of sound velocities for D = 2 and η = 0.1. The number of particle is set to be N = 104. The horizontal axis is
the reduced temperature scaled by the BKT transition temperature tBKT = TBKT/(gn), which is determined by the KT-Nelson’s
formula in equation (20) for the superfluid density in the two-fluid model while ρn is computed by equation (11). Inset: the first
sound and second sound velocity. The solid lines represent the results for η = 0.1 and the dotted ones represent those for
η = 0.2.

Figure 4. Hybridization temperature for D = 3 and D = 2 as a function of the gas parameter η = mgn1−2/D/ (2π). In the latter
case, the particle number is set to N = 104. In 2D, moreover, the hybridization temperature coincides with the BKT transition
temperature for η�0.6.

hybridization of u1 and u2 occurs around thyb � 0.4 for η = 0.1. Figure 4 displays the dependence on the
gas parameter η of the hybridization temperature thyb, which is determined by the temperature at which the
difference between the first and second sound velocity starts to increase. Note that in 2D, for η�0.6, thyb

coincides with the BKT transition temperature. In the the region of η�0.6, at which thyb = tBKT in 2D, we
infer from figure 4 that the first and second sound modes are decoupled, respectively, to density and
entropy modes, because the first sound corresponds to the density mode u1 = vA and the second sound
vanishes u2 = 0 in the absence of the superfluid density above tBKT.

Our theoretical approach, based on the Bogoliubov theory, is reliable to describe the propagation of
sound in low-temperature Bose gases, and its predictions are as better as the gas parameter mg is smaller
than 1. The recent experiments of reference [30] with 2D weakly-interacting bosonic superfluids adopt the
value of mg = 0.64, and, therefore, can be described with our Bogoliubov theory. However, since these
experiments focus on the high-temperature regime near TBKT, it is useful to extend our previous results to
improve the agreement in this specific temperature regime.

In particular, the sound velocities are strongly dependent on the superfluid density and the one derived
from the Landau formula of equation (11) has, strictly speaking, a simplified behaviour near TBKT.

To improve our theory in the high-temperature regime of the experiments we evaluate the renormalized
superfluid density, ρ(R)

s , by solving the Nelson–Kosterlitz renormalization group equations [21]. These
differential equations describe the renormalization of the superfluid density due to the presence of
vortex–antivortex excitations, which are not taken into account by the Landau formula of equation (11).
They read [21]

∂l K−1(l) = 4π3y2(l),

∂l y(l) = [2 − πK(l)] y(l),
(21)

where K(l) = ρs(l)/(mT), with ρs(l) the superfluid density at the adimensional scale l, and
y(l) = exp

[
−μc(l)/T

]
is the fugacity, where μc(l) is the vortex chemical potential at scale l.
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Figure 5. First sound and second sound velocity (panel (a)) and rescaled superfluid density Ds = nsλ
2
T in 2D (panel (b)) for

mg = 0.64, plotted in comparison with the experimental data of Ref. [30] where D/Dc = tBKT/t. The particle number is set to be
N = 2178 [30]. The blue and green solid lines represent our results using the renormalized superfluid density [21] calculated
with the chemical potential obtained from Equation (23). The orange and violet dashed lines represent the results of UR analysis
[23–30].

To describe consistently the finite-size experiments, we solve numerically these equations up to a finite
scale, lmax = ln(A1/2/ξ), where A is the area of the system and ξ = (gρ)−1/2 is the healing length,
corresponding approximately to the vortex core size. In the solution of equation (21) the choice of the
initial conditions is quite delicate: we choose the chemical potential of the bare vortices as
μc(0) = π2ρs(0)/(2m2) [36], and for the initial value of K(0) we use K(0) = ρs(0)/(mT), with
ρs(0) = ρ− ρn(0). It is important to point out that the bare Landau density which we introduce here,
ρn(0), is formally the same as equation (11), but is calculated with the Popov spectrum:

EPop,p =

√
p2

2m

(
p2

2m
+ 2μ

)
, (22)

where μ is the chemical potential of the system. We derive this chemical potential as a function of N and of
T by inverting numerically the grand canonical equation of state, which reads (see reference [32])

N =
mμLD

4π
ln

(
4

mμa2
2De2γ+1

)
+
∑

p

p2

2m

nB(EPop,p)

EPop,p
. (23)

In particular, we evaluate a2D as [33]

a2D = 2.092az ln

(
−
√

π

2

az

a3D

)
, (24)

where az is the characteristic length of the transverse harmonic confinement and a3D is the
three-dimensional s-wave scattering length, which is directly controlled in the experiment [30]. The
procedure described above allows us to have reliable results near TBKT for ρ(R)

s ≡ ρs(lmax). Given the
renormalized density ρ(R)

s for every temperature T, we use it as an input to calculate the sound velocities.
Our results are outlined in figure 5, which shows, in comparison with the experimental data [30], u1 and

u2 in the left panel and the superfluid density Ds = nsλ
2
T, with λT ≡

√
2π/ (mT) the thermal wavelength,

in the right panel. As in the experiment, here we use mg = 0.64, the number density of n = 3 μm−2 and the
system area of A = 33 × 22 μm2 [30]. We also emphasize that, within our finite-size renormalization group
calculation, we find a critical BKT temperature of 37 nK, which is practically coincident with the result
TBKT = 2πn/

[
m ln

[
380/

(
mg

)]]
of reference [23], and compatible with the critical temperature of the

experiments of 42 nK [30]. Figure 5(a) indicates that the results using the renormalized superfluid density
fraction with the exact chemical potential, represented by the blue and green solid line, are in reasonable
agreement with the experimental values. Note that our first sound velocity also describes the behaviour
towards low temperature in a satisfactory way. The slight deviation of our second sound velocity from the
experimental one at low temperature is ascribed to the inconsistency between the thermodynamic
quantities that appear in equation (10), calculated under the low-temperature approximation μ = gn, and
the renormalized superfluid density ρ(R)

s calculated with the improved μ. While this approximation is not
particularly problematic near TBKT, it does not allow us to extend the present theory at low temperatures,
where the sound velocities are more sensitive to the normal fraction. Figure 5(b) displays that the
renormalized Ds obtained with the beyond-mean-field chemical potential agrees well with the experimental
values. From this last figure, thus, we can expect that the corrections due to the interaction between
Bogoliubov quasiparticles, which will be more relevant in the high temperature regime and outside the very

7
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Figure 6. Results of sound velocities for D = 1 and η = 0.1. The horizontal axis is the reduced temperature t = T/(gn).

weakly-interacting regime of mg � 1, are, at least for the superfluid density, not particularly relevant. This
suggests that future works in 2D with the full evaluation of the improved thermodynamics could be a solid
benchmark for the sound velocities both in the low and high temperature regimes.

3.3. One-dimensional Bose gas
On the basis of the Mermin–Wagner theorem [17], the critical temperature TBEC below which there is
Bose–Einstein condensation, or equivalently below which there is off-diagonal long-range order (ODLRO),
is positive in 3D, it is zero in 2D, and it is absent in 1D. Instead, the critical temperature Tc below which
there is superfluidity, or equivalently below which there is algebraic long-range order (ALRO), is equal to
TBEC in 3D, it is equal to TBKT in 2D, and it is zero in 1D. Thus, in the thermodynamic limit and with
T > 0, for a 1D weakly-interacting Bose gas there is neither ODLRO nor ALRO. However, a finite 1D
system of spatial size L is effectively superfluid [37] if T � Eφ/ln(L/ξ), or equivalently
t � tφ ≡ 1/

[√
πη ln

(
2N

√
πη

)]
, where Eφ � n/(mξ) is the energy to create a phase slip (black soliton)

and ξ is the corresponding healing length. Note that, for η � 1, the adimensional temperature tφ can be
quite large.

In figure 6, we show the results of u1 and u2 in an 1D Bose gas for η = 0.1. Since the Bogoliubov theory
in 1D well describes the thermodynamics in the weakly-interacting regime up to η ∼ 1 at low temperature
[38, 39], our 1D results would be reliable in this regime. The figure exhibits no hybridization of u1 and u2

because of u1 = u2 = vB at zero-temperature within the mean-field and the gap opening at
zero-temperature between u1 and u2 by the quantum correction. In the incompressible regime within the
mean-field theory, one can obtain u1 = u2 = vB in 1D, which indicates that the decoupled density mode
and entropy mode are degenerated. Hence, t = 0 corresponds to the hybridization temperature at which the
first and second sound mode are closest to each other in 1D. The beyond-mean-field correction decreases
vA and results in u1 = vL and u2 = vA, namely the first and second sound correspond to entropy and
density mode respectively due to the negative quantum correction v2

Q < 0 unlike 3D or 2D case.

4. Conclusion

We discuss sound modes in a collisional Bose gas in D dimensions by means of the Landau’s two-fluid
hydrodynamics and of the Bogoliubov theory. We observe the hybridization between the first and second
sound for D � 2 and we find that, for a 3D Bose gas in particular, it occurs for any gas parameter. For 2D
collisional superfluids, comparing our theory with the experimental observations of reference [30], we find
that, after an improved calculation of the renormalized superfluid density based on the beyond-mean-field
equation of state, our results are in fair qualitative agreement with the measured values. Notably, our results
for the superfluid density reproduce quite well the experimental data, suggesting that an improved theory,
totally based on the equation of state of equation (23), is a promising approach to derive the whole
finite-temperature thermodynamics. This general calculation, which is expected to reproduce the first and
second sound of 2D superfluids quantitatively better, is left for future works. Finally, we computed the
sound velocities also in 1D, finding no hybridization. Since there are no available experimental data yet in
this configuration, our 1D analysis could provide a benchmark for future investigations.
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Appendix A. Sound velocity in the phononic regime

At very low temperature, according to reference [9], and under the condition g �= 0, all the thermodynamic
functions are fixed by the thermal excitations of the phonons and consequently the Bogoliubov spectrum
can be approximated as

Ep = vBp. (A.1)

In this phononic regime, within the framework of mean-field theory, one can perform the momentum
integral in equation (1) analytically as

F

N
=

gρ

2m
− ΩDΓ(D)ζ(D + 1)

(2π)D

mD+1

gD/2ρD/2+1
TD+1, (A.2)

P =
gρ2

2m2
+

(
D

2
+ 1

)
ΩDΓ(D)ζ(D + 1)

(2π)D

mD

gD/2ρD/2
TD+1, (A.3)

where ΩD = DπD/2/Γ(D/2 + 1) is the volume of the D-dimensional unit sphere with Γ(x) the Euler
gamma function and ζ(x) the Riemann zeta function. The entropy per mass unit, specific heat, and normal
density fraction are obtained as

s = (D + 1)
ΩDΓ(D)ζ(D + 1)

(2π)D

mD

gD/2ρD/2+1
TD, (A.4)

cv = (D + 1)D
ΩDΓ(D)ζ(D + 1)

(2π)D

mD

gD/2ρD/2+1
TD, (A.5)

ρn = (D + 1)
ΩDΓ(D)ζ(D + 1)

(2π)D

mD+2

gD/2+1ρD/2+1
TD+1. (A.6)

Using equations (9) and (10), at zero-temperature within the mean-field theory, one obtains

u1 = v̄T = v̄A = vB, u2 = vL =
1√
D
vB. (A.7)
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