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ABSTRACT

The control over the geometry and topology of quantum systems is crucial for advancing novel quantum technologies. This work provides a
synthesis of recent insights into the behavior of quantum vortices within atomic Bose–Einstein condensates (BECs) subject to curved
geometric constraints. We highlight the significant impact of the curvature on the condensate density and phase distribution, particularly in
quasi-one-dimensional waveguides for different angular momentum states. An engineered periodic transport of the quantized vorticity
between density-coupled ring-shaped condensates is discussed. The significant role of curved geometry in shaping the dynamics of rotational
Josephson vortices in long atomic Josephson junctions is illustrated for the system of vertically stacked toroidal condensates. Different meth-
ods for the controlled creation of rotational Josephson vortices in coupled ring systems are described in the context of the formation of long-
lived vortex configurations in shell-shaped BECs with cylindrical geometry. Future directions of explorations of vortices in curved geometries
with implications for quantum information processing and sensing technologies are discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1116/5.0211426

I. INTRODUCTION

In the last few years, the superfluidity of atomic Bose–Einstein
condensates (BECs) confined in low-dimensional curved geometries
attracted increasing interest in the ultracold atoms community.
Explorations of this kind aim to identify phenomena which are absent
(or just occur differently) in low-dimensional flat systems. The starting
point for reviewing such investigations is identifying the features that
characterize a geometry as curved. These include the local curvature,
the periodic boundaries, the manifold compactness, and the non-
trivial topology.1 Their combination generates examples of one-
dimensional (1D) and two-dimensional (2D) geometries, such as rings,
curved wave guides, spheres, tori, etc.: analyzing atomic gases confined
in these manifolds can clarify how superfluidity and vortex physics
interplay with the hosting geometry.2–17 Further explorations along
this line will, in perspective, enable the possibility of engineering and
controlling superfluidity by geometric means, with possible technologi-
cal and fundamental consequences.

The topological nature of quantum vortices is essential for under-
standing their stability and dynamics in superfluid BECs. In a BEC
state, bosonic atoms condense into the same single-particle state,
exhibiting macroscopic quantum phenomena. A quantum vortex in a

BEC is a region where the phase of the wave function winds around a
line or point, with the density of the condensate going to zero at the
core of the vortex. The circulation of the velocity field around the vor-
tex is quantized; namely, it takes discrete values corresponding to the
vortex winding number or topological charge. Experiments with BECs
that create and manipulate quantum vortices provide empirical evi-
dence of their topological nature.18 In particular, this property affects
the stability of the quantum vortices for substantial perturbations and
their dynamics during collisions (e.g., vortex–antivortex annihilation).
Thus, quantum vortices in a curved geometry are a unique platform to
study the intimate relation between topology and curvature.

From the mathematical viewpoint, a deep connection between
the curvature and the topological properties of a surface is established
by the Gauss–Bonnet theorem.19 For a given compact and boundary-
less manifold, like the surface of a sphere or of a torus, the theorem
states that the surface integral of the Gaussian curvature is equal to
2pv. Here, the Euler characteristic of the surface v is a topologically
invariant integer number, which provides information on the manifold
holes, connected components, and other topological properties. The
theorem provides, therefore, a connection between apparently distinct
areas of mathematics such as differential geometry and topology.
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When analyzing the physics of superfluids, this mathematical result
implies that a different vortex dynamics in flat versus curved superflu-
ids cannot always be attributed either to curvature or to topology (or
also to the boundary conditions in the case of open manifolds). In
these cases, one should then refer to the general role of the curved
geometry, in opposition to a flat surface geometry with trivial topology.
The general message is that the properties of the surface combined
with the topological nature of the phase field influence the presence
and the configuration of vortices. Understanding better this interplay
in specific cases is crucial for advancing in predicting and in explaining
the behavior of vortices in relation to the geometric and topological
properties of the underlying space.

Vortices in curved geometries have been extensively investigated
across various physical systems, becoming the focal point of numerous
theoretical and experimental studies. Their analysis in ultracold atoms
systems has developed over the years, and we highlight in this paper a
few recent results connected to vortex physics. In particular, the intri-
cate behavior of quantum vortices in curved geometries20–24 points
toward novel quantum states and phase transitions, governed by the
interplay of curvature, interaction, and topological constraints. The
authors of Ref. 20 have studied superfluid vortex dynamics on an
infinite cylinder, highlighting the unique behavior due to quantum-
mechanical effects, such as quantized translational velocities for
vortices due to the single-valued requirement of the condensate wave
function, and extend the analysis to finite cylinders. The authors of
Ref. 25 have studied the thermodynamics of shell-shaped BECs in bub-
ble traps, showing how tuning trap parameters shifts the system from
solid spheres to thin shells, affecting the excitation spectrum and criti-
cal temperature for condensation. The study26 investigates vortex
dynamics in shell-shaped BECs, particularly focusing on the stabiliza-
tion of vortex–antivortex pairs under rotation, and highlights how
these dynamics can serve as a nondestructive method to characterize
and distinguish hollow BECs from filled ones.

The experimental observation of these phenomena requires to
confine superfluids in curved geometries. For this scope, the work27

proposed a framework for creating BECs in shell geometries by using
radio frequency dressing, aiming to explore new collective modes and
topological effects in microgravity conditions facilitated by the NASA
Cold Atom Laboratory on the International Space Station.
Investigations conducted aboard the International Space Station28

have advanced our understanding of ultracold atomic systems through
the observation of bosonic gases confined in ellipsoidal bubbles. These
experiments, using the unique conditions of microgravity, have
explored novel geometric and topological configurations of quantum
systems. Recent experimental efforts29 have successfully realized shell-
shaped BECs on Earth, utilizing dual-species mixtures composed of
sodium and rubidium atoms. This was achieved within a specifically
engineered optical dipole trap, facilitating the formation of a core–shell
structure. These two realizations currently feature competing advan-
tages toward the goal of investigating superfluid vortex dynamics in
two-dimensional (thin) condensate shells: while the microgravity
realization reached the two-dimensional closed-shell confinement of
thermal gases, the dual-species mixture could instead produce three-
dimensional (3D) (thick) shells but with no detectable thermal density.
In perspective, the mixture realization could also be suited for analyz-
ing the dynamics in curved geometries of massive-core vortices,30

which, in this context, are topological excitations of the superfluid

constituting the shell whose cores are filled by the atoms of the other
species. In addition, a novel approach31 to preparing a quantum gas in
a shell trap has been demonstrated, starting from a degenerate Bose
gas in a hybrid trap that combines a magnetic quadrupole trap with an
attractive optical trap. Experimentally accessible methods32 allow effi-
cient transitions of quantum gas into a shell-shaped trap with minimal
excitation of the center-of-mass motion. Finally, relevant to the theo-
retical analyses of the present work which focus on ring-like geome-
tries, we point out the implementations of atomic confinement in
rings,33–35 obtained by intersecting a magnetic shell potential with
optical traps that confine the gas along the shell equator.

Recent advancements in experimental physics have led to signifi-
cant breakthroughs in the understanding and manipulation of BECs,
ranging from the exploration of novel quantum states in microgravity
to the development of sophisticated atomtronic circuits36 on Earth.
The development of a painting potential technique37,38 employing rap-
idly moving laser beams to create dynamic, arbitrary, and stable optical
dipole potentials enables the generation of BECs in various geometrical
configurations, including toroids and ring lattices. This approach offers
the capability to dynamically alter the trapping potential and allows for
the generation, guidance, and manipulation of coherent matter waves
within a single device, akin to an integrated optical circuit. Thus, it
opens prospects for the realization of sophisticated quantum comput-
ing and sensing devices. Using strongly correlated neutral bosons in a
mesoscopic ring-shaped potential, the work39 uncovers the fractionali-
zation of angular momentum, a quantum-many-body feature,
enabling the operation of rotation sensors and gyroscopes with
extremely high sensitivity. Recent investigation40 demonstrates the use
of a toroidal BEC as a rotation sensor by measuring the interference
between counter-propagating azimuthal phonon modes.

Curved geometries play a crucial role across various physical sys-
tems, extending well beyond atomic BECs. Several studies discussed
the role of curvature and diverse geometric aspects in condensed mat-
ter systems in the last few decades.41–46 One notable example is in the
superconductors, specifically in superconducting nanoshells. This
paper47 demonstrates the coexistence of the Meissner and vortex states
on a nanoscale superconducting spherical shell demonstrating the sig-
nificant impact of curved geometries. In these systems, the curvature
and topology of the superconducting layer influence the behavior of
vortices and antivortices, leading to phenomena such as the separation
of vortex–antivortex pairs and the formation of a Meissner belt around
the equator of the sphere. Non-planar geometries give rise to exotic
quantum states, yet their realization within solid materials poses signif-
icant challenges. An interesting approach was demonstrated in Ref. 9,
which employs an atomic quantum simulator allowing atoms to mimic
electronic behavior in materials, within a curved, cylindrical space sub-
jected to a radial magnetic field. Furthermore, curved geometries are
essential in other areas of physics, such as general relativity, where the
curvature of space-time governs gravitational interactions, and in soft
matter physics, where the curvature of interfaces can influence the
behavior of colloids, droplets, and biological membranes. These exam-
ples underline the broad relevance of curved geometries in physics,
extending far beyond atomic BECs.

Providing a comprehensive literature overview on this topic
exceeds the scope of this short review-perspective paper; however, a
thorough analysis of the literature is available in several review papers.
In particular, Ref. 41 presents a comprehensive overview of how
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topological defects in the form of vortices and phase dislocations inter-
act with curved geometries, particularly in thin film systems. The work
of Ref. 48 extensively covers the Hamiltonian dynamics of vortex
motion in classical fluid mechanics. The recent review paper1 presents
a comprehensive overview of shell-shaped bosonic gases as well as the
behavior of both thin and thick spherical shells of bosonic gases. The
work of Ref. 1 also highlights the unique properties of low-
dimensional quantum gases in curved geometries. Another recent
review paper49 extensively explores the quantum statistical physics of
two-dimensional shell-shaped quantum gases at zero and finite tem-
peratures. It overviews BECs, superfluidity, vortex physics, and the
crossover from BCS to BEC regimes, particularly emphasizing the
unique aspects brought by the curved geometry. The paper also
discusses hydrodynamic excitations and their connection to the
Berezinskii–Kosterlitz–Thouless (BKT) transition, positioning shell-
shaped atomic gases as a promising experimental platform for study-
ing quantum many-body physics in curved geometries.

In this work, we provide a concise overview of the recent findings
on vortices in atomic BECs related to distinct curved geometries: (i)
curved ring-shaped waveguides, which can be effectively modeled as
1D or 2D systems (Sec. II), and (ii) coupled curved waveguides exhibit-
ing essentially 3D dynamics of the vortices influenced by curved geom-
etries (Sec. III). In Sec. II A, we consider particular examples of the
essential impact of curved geometry on the properties of quantum vor-
tices. Specifically, we examine how curvature affects the density and
phase distribution of the condensate in a quasi-1D waveguide across
various angular momentum states. In Sec. II B, we discuss the role of
curvature in deterministic transition between quantum states with dif-
ferent angular momentum. We consider an example of an experimen-
tally accessible method for the controllable creation of quantum
vortices in quasi-2D single ring-shaped condensates. In Sec. IIC, we
introduce physical systems that hold promise as platforms for novel
quantum sensors: a dual-ring setup consisting of interconnected rings.
Section IIIA highlights the significance of curvature in the 3D dynam-
ics of rotational Josephson vortices (JVs) in long atomic Josephson
junctions formed by a 3D system of vertically stacked toroidal conden-
sates. In Sec. III B, we focus on the methods of controllable formation
of Josephson vortices in a system of stacked rings. Section III C dis-
cusses remarkable 3D hybrid vortex configurations illustrating proper-
ties of the quantum vortices in a cylindrical trap. Section IV includes a
summary and analysis of the prospects of future studies related to vor-
tices in curved geometries.

II. QUANTUM VORTICES IN CURVED WAVE GUIDES

Due to the intrinsic curvature of atomtronic circuits’ wave
guides,50–52 mastering the manipulation of condensate density and
phase distribution becomes essential for advancing quantum sensors
and information processing devices utilizing atomic BECs. Enhanced
control over these aspects in curved waveguides opens a way for creat-
ing novel quantum devices, offering improved sensitivity and multi-
functionality. In the Sec. III, we consider several examples of
remarkable dynamical properties of the quantum vortices driven by
curvature geometry in quasi-1D and 2D curved atomic waveguides. In
the toroidal topology of the trapped BEC under consideration, vortices
are inherently pinned at the center of the ring-shaped condensate. This
pinning occurs where the vortex energy reaches a local minimum,
thereby ensuring that even multi-charged (q > 1) metastable vortex
states exhibit significant robustness. This stability allows considering

strong variations of the curved geometry and investigating induced
phase and density transformations in the quasi-1D and quasi-2D
toroidal BECs.

A. Curvate-induced control on density and phase in
curved waveguides

In our recent investigation,53 we explored the influence of
ellipticity-induced curvature on atomic BECs within quasi-1D closed-
loop waveguides. Our theoretical framework reveals a remarkable
interplay between curvature and inter-particle forces. It turns out that
curvature-induced density modulations are significantly diminished in
the presence of strong repulsive interactions. In areas of minimal cur-
vature, particularly in waveguides exhibiting superflow with large
eccentricity, we detect notable phase accumulation. Furthermore, in
waveguides hosting vortices, we observed dynamic transitions across
states characterized by distinct angular momenta. The observed intri-
cate relationship between curvature and interaction effects allows the
engineering of quantum states within constrained settings with curved
geometry.

The Gross–Pitaevskii equation (GPE) provides an accurate
description of the dynamics of BECs in mean-field approximation. In
three dimensions, the GPE is formulated as

i�h
@W
@t

¼ � �h2

2m
r2 þ Vextðr; tÞ þ gjWj2

� �
W; (1)

where Wðr; tÞ is the wave function of the condensate. In Ref. 53, we
have considered two scenarios: the non-interacting condensate with
g ¼ 0, and the repulsive interaction case with g ¼ g3D ¼ 4pas�h

2=m,
where as is the s-wave scattering length. The wave function satisfies the
normalization condition

Ð jWj2dr ¼ N , where N is the number of par-
ticles in the condensate.

We model the external trapping potential Vextðx; y; zÞ as a com-
bination of an parabolic potential in the z-direction and an elliptic
waveguide in the ðx; yÞ plane, with a larger semi-axis a,

Vextðx; y; zÞ ¼ 1
2
mx2

zz
2 þ 1

2
mx2

?R
2ðx; yÞ: (2)

Here, Rðx; yÞ ¼ ½ðx � x0Þ2 þ ðy � y0Þ2�1=2 characterizes the mini-
mum distance between the point in the ðx; yÞ plane and a co-planar
point ðx0; y0Þ at the ellipse.

In order to isolate and examine the influence of curvature on the
condensate density distribution, maintaining a uniform cross section
along the waveguide is crucial. This requirement is fulfilled by the
employed trapping potential described by Eq. (2), which establishes a
parabolic trap z-direction and a waveguide in the ðx; yÞ plane with a
parabolic profile perpendicular to the ellipse direction. The isolines of
the potential form circles of constant radius along the quasi-1D wave-
guide, as shown in Fig. 1(a).

We have found a steady-state solution of the form Wðr; tÞ
¼ ~WðrÞe�ilt=�h; where l is the chemical potential. In general, the com-
plex wave function ~W ¼ j ~WðrÞjeiUðrÞ exhibits an inhomogeneous
phase UðrÞ with a circulation given by

þ
C
rUðrÞ � dl ¼ 2pq; (3)
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where the contour C represents the ellipse x20=a
2 þ y20=b

2 ¼ 1 and q is
an integer denoting the topological charge of the wave function. For
the ground state, q ¼ 0, while q > 0 corresponds to a state with q vor-
tices, resulting in a counter-clockwise flow in the waveguide.

Figure 1(b) illustrates examples of the density distributions for
the ground states (q ¼ 0) in the non-interacting case (g ¼ 0) and the
repulsive interaction case (g ¼ g3D > 0). To compare the properties of
the numerically obtained ground states, determined by solving the 3D
stationary GPE, with an approximate effective potential induced by
curvature, we have used in Ref. 53 a non-polynomial Schr€odinger
equation (NPSE).54 This model incorporates a quantum curvature-
induced potential, which exhibits a double-well shape. The eccentricity
of the ellipse notably influences the specific features of this potential.

The use of an elliptic waveguide enables the accumulation of a
substantial phase jump within a localized region, a remarkable achieve-
ment inaccessible in a single-connected quasi-one-dimensional con-
densate. Figure 1 presents examples of density and phase distributions
for stationary states with q ¼ 3 in Fig. 1(c) and q ¼ 4 in Fig. 1(d) for
an eccentricity of e ¼ 0:99. According to findings in Ref. 53, the spatial

distribution of the phase transitions from a uniform phase gradient in
a ring of constant curvature (so that the eccentricity, e ¼ 0) to an
essentially non-uniform phase distribution in waveguides with variable
curvature. This property suggests that an increase in eccentricity leads
to a more homogeneous phase distribution in areas of greater curva-
ture, thus localizing the phase variation in areas of small curvature.

The curvature effect in the elliptic waveguide significantly enhan-
ces the localization of a substantial phase shift. This is particularly evi-
dent when q � 3 (as illustrated in Fig. 1), where the pronounced phase
variation leads to an essential redistribution of density. Such a phase
discontinuity can lead to the emergence of regions with density nodes,
effectively acting as domain walls or dark solitons that separate areas
with a phase difference of p.

Comprehensive numerical simulations based on the damped
Gross–Pitaevskii equation have revealed complex behaviors in the sys-
tem as detailed in Ref. 53. It turns out that not only the ground state
(q ¼ 0) but also the single-charged (q ¼ 1) and double-charged
(q ¼ 2) superflows remain stable over long-term evolution, even at
high eccentricity (e ¼ 0:99), maintaining their coherent flow patterns

FIG. 1. (a) Schematics of the elliptic waveguide geometry used for trapping a condensate as described in Ref. 53. Shown the 3D plot of the density isosurface and condensate
density in a perpendicular cross section (brighter colors indicate higher condensate density). (b) Density distribution at the z ¼ 0 plane for the non-interacting case (upper row)
and the case with repulsive interaction (lower row), shown for two different values of the eccentricity e. Notably, density modulations arise due to curvature in regions with high
curvature, and these modulations are reduced by strong repulsive interactions. (c) Color-coded phase of the condensate in z ¼ 0 plane combined with density isolines for the
stationary states with superflow winding number q ¼ 3. (d) Winding number q ¼ 4.
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without significant transformations. For higher-charged superflows
with q � 3, a series of complex dynamic transformations among dif-
ferent states were observed. These superflows undergo significant
changes in their flow patterns and topological structures. The evolution
of these superflows demonstrates transitions between various states,
leading to a complex and intricate dynamic landscape, as was found in
Ref. 53.

B. Dynamics of persistent current formation
in quasi-2D curved wave guides

Significant experimental advancements in creating atomic gases
within toroidal geometries have opened novel prospects for the studies
of the fundamental properties of quantum vortices. The study of ring-
shaped BECs has, thus, become a prominent focus in both experimen-
tal and theoretical research.56–66 The series of the experiments67–69 has
demonstrated deterministic, abrupt transitions between quantized cir-
culation states in a ring-shaped Bose–Einstein condensate stirred by a
rotating barrier. The stirring repulsive potential produced a moving
weak link, i.e., a curved region on the ring with lower atomic density,
as illustrated in Fig. 2. These quantum transitions are very sensitive to
the amplitude and angular velocity of the weak link, which might
enable novel super-sensitive rotation sensors that could dramatically
improve the accuracy of inertial navigation systems. The experimental
discoveries inspired further theoretical investigations, which have
addressed the role of curvature of the trapping geometry on phase slip
dynamics.

In this subsection, we briefly overview our previous theoretical
studies,55,70 inspired by the experimental findings reported in Refs. 67

and 68. These phase slips, initiated by vortex excitations due to a rotat-
ing weak link, are crucial for understanding the interactions between
localized condensate density reductions, atomic superflows, and the
energetic and dynamic stability of vortices in the annular condensate.

The emergence of persistent currents is driven by a wide rotating
barrier (refer to Fig. 2). This rotation not only modifies the density of
the condensate but also establishes a weak link and excites superflows
within the annular condensate. It is important that repulsive barrier
substantially modifies a geometry of the isolines of constant conden-
sate density and simultaneously modifies the local behavior of the
superflow, as is seen from side and top views of the weak link region.
Indeed, in the weak link region, the flow’s streamlines and condensate
surface are curved, which substantially affect the energetic stability and
dynamic behavior of vortices in a stirred toroidal condensate.55

To analyze the temporal evolution of the condensate, we used the
damped 3D GPE,

ði� cÞ�h @
~Wðr; tÞ
@t

¼ Ĥ þ ~g j ~Wðr; tÞj2 � l
� �

~Wðr; tÞ; (4)

where c is a small phenomenological dissipation parameter c � 1.
The Hamiltonian, denoted by Ĥ ¼ �ð�h2=2MÞDþ Vðr; tÞ, incorpo-
rates the Laplace operator D. The coupling strength is represented by
~g ¼ 4p�h2as=M, where M is the mass of a 23Na. We assume that the
condensate’s temperature remains significantly below the condensa-
tion threshold, i.e., T � Tc. The chemical potential lðtÞ in our
dynamic simulations is adjusted to simulate an observed in experi-
ments decay in the number of condensed particles over time, following
NðtÞ ¼ Nð0Þe�t=t0 , with t0 indicating the BEC’s 1=e lifetime.

FIG. 2. Formation of a persistent current in a quasi-2D toroidal BEC by a rotating weak link as described in Ref. 55. (a) Side view of the condensate near the weak link with
embedded vortex lines (red curves depict vortex cores of three vortices). The quasi-2D geometry makes the vertical orientation of the vortex line energetically preferable so
that the bent vortex line has higher energy than the vertical vortex line: E3 > E2. The vertical vortex within the weak link resides in a lower-density area, resulting in even lower
energy (E1 < E2 < E3). (b) The top view of the superflow streamlines around the weak link, identifying a vortex and an antivortex with a red cross and a blue circle, respec-
tively. (c) Top view with color-coded density combined with the superflow streamlines obtained in Ref. 56. Schematics of the (d) top view and (e) side view of the pancake-
shaped toroidal condensate. The phase slip is driven by a vortex line from the outer edge and an antivortex line from the inner region, which forms a moving vortex–antivortex
pair.
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The external potential Vðr; tÞ ¼ Vtðr; zÞ þ Vbðr; tÞ involves the
axially symmetric, time-independent toroidal trap and the time-
dependent potential of a rotating repulsive barrier Vbðr; tÞ. The trap is
approximated by a harmonic potential,

Vtðr; zÞ ¼ 1
2
Mx2

r ðr � RÞ2 þ 1
2
Mx2

zz
2; (5)

with r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. We assume a tunable weak link described by a

barrier potential Vbðr?; tÞ, which is homogeneous in a radial direction
across the toroidal condensate,

Vbðr?; tÞ ¼ UðtÞHðr? � nÞe�ð1=2c2Þ r?�n½ �2 ; (6)

where r? ¼ x; yf g is the radius-vector in the ðx; yÞ plane; the unit
vector nðtÞ ¼ cosðXtÞ; sinðXtÞ� �

points along the azimuth of the
barrier maximum. All parameters of the potential, including the
time-dependent barrier amplitude UðtÞ, were chosen to match
the experimental conditions in Ref. 67 (see Ref. 55 for details). In the
experiment,67 the values of angular velocity were taken in the range
that corresponds to linear velocities well below the speed of sound
propagating around the ring. For slow rotation rates pronounced
quantized phase, slips were observed at well-defined critical angular
velocities.

Let us discuss the role of curved geometry in the mechanism of
these phase slips. During the stirring procedure, two vortices of oppo-
site charges are nucleated on the inner and outer edges of the weak
link (see Fig. 2) with significant curvature. As the superflow velocity is
bigger on the outer edge, the vortex from outside enters the weak link
first and moves toward the central hole as illustrated in Fig. 2(b). The
schematics in Fig. 2(a) of the density distribution in the vertical direc-
tion in the vicinity of the weak link illustrate that the vortex within the
weak link resides in a lower-density area, resulting in reduced energy.
While the vortex traverses the weak link, a negatively charged antivor-
tex line from the central hole and the incoming vortex approach each
other and create a vortex–antivortex dipole. This coupled vortex–
antivortex pair circles clockwise inside the central hole until it reaches
the region of the weak link. This moving vortex dipole usually escapes
from the central hole and finally decays. If the barrier rotation rate is
well above a threshold, usually a series of vortices enter into the central
hole and form bound pairs with antivortices from the central hole.
Finally, the vortex–antivortex pairs jump out of the condensate. Note
that the total angular momentum of the escaping vortex dipole is equal
to zero, but each time an external vortex enters the condensate, it adds
one unit of topological charge to the persistent current in the ring.

The experiment67 with oblate toroidal condensate dynamics of
the vortices does not involve bending of the vortex line since the verti-
cal position of the vortex is energetically preferable, as illustrated in
Fig. 2(a). Thus, the vortex dynamics can be treated as quasi-2D, allow-
ing considering only motions in the horizontal plane, while the rest of
the degrees of freedom remain frozen in the state with the lowest
energy. The rotating weak link creates additional curvature in the con-
densate distribution in the horizontal plane, which drives the forma-
tion of the vortex dipole, as shown in Fig. 2. Furthermore, the weak
link deforms the density distribution in the vertical direction, which
drives the vortex line to the weak link region as this position is energet-
ically preferable, as is seen from Fig. 2(a).

The theoretical predictions of Ref. 55 are in qualitative agreement
with the experimental findings: the threshold angular velocity

decreases when the barrier height increases. However, a comparison of
the experimental series for the fixed barrier height shows that the theo-
retically predicted is higher than the experimentally measured angular
velocity for the phase slip 0 ! 1. It is worth mentioning that account-
ing for the stochastic thermal effects71 and decreasing number of
atoms72 are not able to eliminate the discrepancy between theory and
experimental observations. Thus, further theoretical and experimental
works are needed to describe quantitatively the phase slips observed in
the experiments.

C. Transfer of quantum vortices in co-planar linked
atomic rings

The recent work73 explores the dynamics of a BEC within a sys-
tem of two co-planar ring-shaped structures, linked by a tunable, weak
connection. This connection facilitates the coherent transfer of quan-
tum vortices between the two rings. Recent investigations74 of similar
systems at the microscopic level revealed quantum phase slips in a
double-ring framework featuring an adjustable weak link, as illustrated
in Fig. 3. While mean-field theory offers a view of a many-particle sys-
tem that is both highly controllable and is not highly sensitive to ther-
mal and quantum perturbations, the many-body perspective
introduces the possibility of superposition and entanglement among
these current states. Within this framework, an additional ring could
serve either as a noninvasive diagnostic tool for experiments in the pri-
mary ring or as part of a novel, dual-ring setup. In the latter case, the
system’s sensitivity to external variables during the transfer of the per-
sistent current could be applied for high-precise measurements.

A state with asymmetric distribution of the angular momentum
in a system of linked rings can be created in a similar way, as it was
realized experimentally: by phase imprinting, by stirring, and by sto-
chastic merging. An interesting alternative was suggested in Ref. 75,
which demonstrated the spontaneous emergence of persistent currents
and vortices in a system of two co-planar ultracold bosonic gas rings
with a common interface or in a lemniscate geometry, by quenching
across the Bose–Einstein condensation phase transition, revealing the
potential for independent winding numbers and flow directions in the
rings, with their persistence supported by domain formation’s local
nature and the topological protection of winding numbers.

The consistent transfer of persistent current between two rings
was theoretically investigated in Ref. 73. The comprehensive simula-
tions, spanning both 2D and 3D within a quasi-2D framework, have
shown that these oscillations persist over time, even at finite tempera-
tures, as evidenced by two finite temperature models: projected sto-
chastic GPE and equilibrium ZNG model. Notably, at lower
temperatures and under minimal damping conditions, these oscilla-
tions gradually decay until the vortex settles at the center of the system.
In the presence of significant damping, the oscillations are damped.

Supporting these observations, an analytical model of the vortex
dynamics was developed in Ref. 73. This model assumes the vortex
moves through the rings’ central, low-density area and qualitatively
describes the damping level at which oscillations vanish. These numer-
ical and analytical findings indicate that the oscillation frequency
might serve as a reliable indicator of inherent system properties, and
the duration of oscillation could act as a temperature indicator. Given
the current state of experimental techniques and detection methods,
these results open the way to novel quantum devices and sensors.
While a high-damping scenario typically positions the vortex at the
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system’s center, any external rotation or acceleration would alter the
ultimate location of the vortex. This allows potential application of the
linked atomic rings in developing an accelerometer, which is a promis-
ing direction for future research.

III. THREE-DIMENSIONAL DYNAMICS OF QUANTUM
VORTICES IN A COUPLED SYSTEMWITH CURVED
GEOMETRY

As highlighted in Sec. II, the dynamics of vortices in a flattened
(oblate) toroidal BECs can be effectively described using a 2D model.
However, the behavior of vortices undergoes a significant transforma-
tion in vertically stacked toroidal condensates, where the vortices
exhibit 3D dynamics. In this section, we consider the dynamics of
merging persistent currents in coupled BEC rings, with a focus on the
influence of three-dimensional nonlinear dynamics of Josephson vorti-
ces (JVs). We discuss how these states can be experimentally created
allowing the controllable generation of the vortices in quasi-2D shell-
shaped condensates with cylindrical geometry.20

A. Rotational Josephson vortices in stacked
ring-shaped condensates

The emergence of rotational fluxons, or Josephson vortices, in the
low-density regions between coupled toroidal BECs has been studied
in Refs. 76–78. The formation of the rotational Josephson vortices is
related to the spontaneous breaking of axial symmetry due to

tunneling flows, which signifies an important property of quantum
vortex dynamics in BECs. The formation of these vortices, even within
symmetric trapping potentials, effectively breaks rotational symmetry
in such quantum systems.

The detailed analysis of the tunneling phenomena between
weakly coupled toroidal BECs demonstrated the impact of population
imbalances and barrier modulations on the dynamics and final angu-
lar momenta of merging BEC rings. The behavior of these fluxons
leads to varied outcomes for the final state of the condensate. The
final state depends on two main factors: the initial population differ-
ence between the two rings and the aspect ratio of the toroidal trap in
which they are contained. Unlike classical fluid dynamics, where vis-
cosity dominates, the quantum system exhibits weak dissipation,
allowing for the emergence of states with increased angular momen-
tum. Specifically, in elongated condensates, the vorticity of the final
state aligns with that of the more populated ring. However, in
“pancake-shaped” rings, there exists a critical imbalance level; below
this level, the system evolves to a state with no net vorticity, whereas
above it, the final state inherits the vorticity of the dominant ring
component. Two examples of evolution for merging pancake-shaped
rings are shown in Fig. 4. The details of the relaxation process and
the role of symmetry in such systems were previously investigated in
our work.76

Employing the damped GPE (4), the dynamics of BECs and the
eventual stabilization of Josephson vortices toward equilibrium states
within toroidal BECs were investigated. The toroidal potential (5)

FIG. 3. (a) Schematics of quantum vortex trigger with the vortex line trapped in one of the rings. The quantum vortex transfers through weak links between rings.
(b) Condensate density isosurface for the double-ring system. Persistent current oscillations showing (c) density and (d) phase. The phase shows an initial antivortex (clockwise
circulation) imprinted into the left ring. After opening the gate between two rings, the antivortex can periodically transfer as described in Ref. 73.
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was combined with a repulsive barrier Vb ¼ UðtÞ expð�ð1=2Þ
�ðz � z0Þ2=a2Þ, describing a blue-detuned sheet beam, which splits
the toroidal condensate in upper and lower weakly coupled rings-
shaped components. Note that, by shifting center z0 of the splitting
barrier, it is easy to prepare an initial state with a dominant popula-
tion in the ring with topological charge q1 (N1 > N2 for z0 > 0) or
q2 (N2 > N1 for z0 < 0).

Further investigations76–78 have demonstrated how variations in
barrier properties and initial conditions can lead to diverse outcomes,
including distinct patterns of symmetry breaking, vortex formation,
and superfluid current distributions.

B. Methods of generation of Josephson vortices in
stacked toroidal condensates

The remarkable finding of the work79 is the theoretical demon-
stration of deterministic discontinuous transitions between distinct cir-
culation states in toroidally confined Bose–Einstein condensates.
These phase slips are triggered by vortex excitations due to a rotating
weak link, leading to the formation of Josephson vortices (JVs)
between the coupled condensates. Using numerical simulations of 3D
damped GPE model, three experimentally accessible methods to gen-
erate and manipulate these states within two coupled coaxial ring-
shaped atomic BECs were demonstrated in Ref. 79. Each method that
reveals different aspects of superflow interactions and JV dynamics is
illustrated in Fig. 5.

Stirring of the asymmetrically populated double-ring system:
This method employs a stirring laser beam to generate persistent cur-
rents in one of the rings, particularly effective in systems with popula-
tion imbalances. It is based on the density differences between the
rings to selectively induce superflows [see Fig. 5(a)].

Stochastic generation of Josephson vortices: This method involves
merging initially separated condensate fragments with random phase

differences, leading to the spontaneous formation of JVs, as illustrated
in Fig. 5(b). This stochastic approach provides insights into the role of
phase coherence and the emergent behavior of superfluid systems
under conditions of controlled disorder.

Asymmetric decay of persistent current in a double-ring system
is shown in Fig. 5(c): This approach involves initially persistent cur-
rents with the same topological charges in both rings and then selec-
tively dissipating the current in one ring via a controlled perturbation.
This method highlights the role of external potentials in manipulating
the decay pathways of persistent currents.

Each of these methods opens a way for creating a versatile plat-
form for investigating phenomena ranging from Josephson effects in
weakly interacting regimes to quantum Kelvin–Helmholtz instability
in merging rings. Moreover, the study illuminates the potential for
using rotational JVs in atomic Josephson junctions as prospective tools
for precision rotation measurements with atomic matter waves.

C. Stable 3D vortex structures in curved geometries

In the study of interacting BECs within vertically stacked toroidal
traps, a notable observation is the formation of long-lived hybrid vor-
tex structures exhibiting hidden vorticity.77 These configurations arise
in systems of two coaxial BEC rings that are axially separated by a
potential barrier, each ring carrying opposite vorticities but collectively
maintaining a composite zero angular momentum.

The emergence of jq1 � q2j fluxons at the interface between super-
fluid flows with different topological charges, q1 and q2, is an inevitable
consequence of the azimuthal periodicity intrinsic to the toroidal conden-
sate wave function. The existence of JVs guarantees that the wave func-
tions of each ring with different topological charges are single-valued.

It turns out that dynamics of the quantum vortices, observed after
the merger of the rings, crucially depend on the aspect ratio
A ¼ xz=xr . For BECs of an elongated trap A < 1, the energetically

FIG. 4. The evolution of the merging squeezed in vertical direction rings as described in Refs. 76 and 77. (a) The dynamics of ring merging when the lower ring (characterized
by q2 ¼ �1) has a significantly larger population than the upper ring (q1 ¼ 0), denoted as N2 � N1. A key feature of this process is the transformation of the rotational
Josephson vortex, initially horizontal (solid black line), into a vertical orientation, eventually forming a V-shaped configuration of a vortex and an antivortex (indicated in blue and
red, respectively). This figure also highlights the trajectory of these vortices as they drift toward the outer edge of the system, guided by the direction of the green arrows, result-
ing in a final state that supports a clockwise persistent current with a quantum number q ¼ �1. (b) Merging of counter-propagating rings with topological charges q1 ¼ 1 and
q2 ¼ �1, where the number of atoms in each ring is slightly different (N1 < N2). Notably, the symmetric movement of quantum vortices toward the outer boundaries (shown
by green arrows), and the pair of vortex lines moving to the inner region (shown by red arrows) dictates that the final state of the system, with a quantum number q ¼ 1, is
determined by the ring with fewer atoms.
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favorable configuration corresponds to JVs aligning horizontally, even
in the absence of a separating barrier between the rings. Using simple
energetic estimates and direct numerical simulation of dissipative 3D
GPE, it was demonstrated in Ref. 77 that rotational fluxons are most
likely to keep the horizontal orientation when elongated rings merge.
Furthermore, this property of elongated condensates does not depend
on the number of atoms but is determined by the aspect ratio of the
trap only.

Figure 6 illustrates the density and flows of the condensate corre-
sponding to the combination of four vortex lines. Vortex lines with a
vertical orientation are trapped within the potential well formed by the
toroidal condensate. The hybrid vortex structures are characterized by
their topological properties, including vertically aligned vortex lines
with horizontally oriented JVs. It is remarkable that instead of the
development of the classical Kelvin–Helmholtz instability at the inter-
face of the merging persistent currents in a prolate potential trap, suffi-
ciently elongated in the axial direction (A < 1), one observes the
formation of nonlinear robust hybrid vortex structures (as illustrated
in Fig. 6). The dynamics of these hybrid structures are investigated in
Ref. 77 under various conditions, including population imbalances
between the rings and different interaction regimes ranging from weak
(characterized by tunneling through the barrier) to strong (where the
rings merge across a reduced barrier).

IV. CONCLUSIONS AND PROSPECTS

In conclusion, we have synthesized recent works on quantum
vortices in atomic BECs subject to curved geometric constraints.
Comparing various BEC systems, we elucidate topological and dimen-
sional differences, which lead to unique physical manifestations with
remarkable implications for the dynamics and stability of vortex struc-
tures in curved geometries. The toroidal topology of the trapped BEC,

which we have considered, guarantees that vortices are pinned at the
center of the ring-shaped condensate, where the vortex energy has a
local minimum, so that vortex states can be very robust. Furthermore,
fundamental properties, dynamics, and stability of topological excita-
tions in BEC can be significantly affected by the curved geometry in
low-dimensional systems. A dark soliton is inherent to the quasi-1D
system, and it is characterized by a node of the condensate density,
accompanied by a phase jump across the soliton. The emergence of
the dark solitons was illustrated by simulations of quasi-1D BEC in
elliptic waveguide.53 In higher dimensions, such as in a 2D system, a
vortex carries quantized angular momentum and is associated with a
phase winding around its core. In a purely 2D system, the vortex core
is a point, while in 3D systems, the vortex core may either be a line
that starts and ends at the condensate’s boundary or a closed-loop
ring. The energy of the vortex increases with the length of the vortex
core. Thus, in a pancake-shape condensate, a short vortex line keeps
the vertical orientations, and its behavior can be effectively described
in the framework of the 2D model. Experimental evidence of this
property of the vortices in an oblate BEC confined in an annular trap-
ping potential is inverse energy cascade, which is inherent for 2D
quantum turbulence.80 However, if a long vortex line appears in the
bulk of the condensate, it starts bending and drifts to the lower-density
regions minimizing its energy. For instance, in an oblate system, the
vortex line can rapidly change its orientation as illustrated in Fig. 4 for
rotational Josephson vortices in merging ring-shaped condensates.
These findings open the way for the generation of the vortices in very
prolate quasi-2D shell-shaped condensates (with almost cylindrical
geometry) allowing experimental demonstration of the single and mul-
tiple vortex structures revealed in Ref. 20. Furthermore, as was demon-
strated in Ref. 77 using a pinning potential, it is possible to create a
completely stable stationary 3D hybrid vortex complexes with a

FIG. 5. Three methods to prepare states with different topological charges in two coupled coaxial ring-shaped atomic Bose–Einstein condensates as described in Ref. 79.
(a) Generating persistent currents by stirring a system of coaxially stacked toroidal condensates, divided by a splitting potential, with the initial ð0; 0Þ state shown in the upper
row. The rings contain different numbers of atoms, and the stirring potential, depicted by the yellow area, rotates anticlockwise with constant angular velocity. (b) Stochastic gen-
eration of a persistent current in weakly coupled rings, resulting from the merging of initially separated fragments with random phase differences. Rapid switching off of the verti-
cal barriers leads to the formation of the double-ring system with a large number of vortices and antivortices. (c) Asymmetric persistent current decay in a double-ring system,
where a vortex leaves the lower ring with the simultaneous formation of a Josephson vortex between the rings (black line).
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tunable value of the angular momentum per particle in the range of
q1 < Lz=N < q2. Such stable hybrid structures with controllable vor-
ticity in curved geometry open a way for potential applications in
atomtronic circuits and quantum information processing such as topo-
logically protected qubits,81 where control over quantum flow and
coherence is essential.

The prospects for further studies in this field are vast, promising
exciting developments in the realm of quantum technologies, as we
continue to probe the frontiers of quantum physics in curved spatial
configurations. Future studies on vortices in BECs in curved geome-
tries could focus on the formation, stability, and dynamics of quantized
vortices in two-dimensional curved superfluids. These studies could
deepen our understanding of superfluid behavior in non-Euclidean
geometries and reveal remarkable properties of vortex dynamics influ-
enced by curvature. In general, the increasing technical capability of
fabricating condensed matter systems with nanoscale-level control45

allows for investigations of the geometry and curvature impacts on
their quantum many-body physics. In perspective, this progress ena-
bles both fundamental investigations of quantum physics in curved
spatial domains and technological applications, in which the
curved geometry allows engineering and control of the properties of
materials.41–45

Reaching the two-dimensional shell regime in the experiments of
Ref. 29 could help to investigate vorticity and superfluid hydrodynam-
ics in a fully closed spherical surface. In addition, the fact that this
geometry is obtained with phase-separated repulsive mixtures could
allow for studies of vortices with massive cores in the ellipsoidal geom-
etry.30 Also, performing the experiments in ground-based laboratories
may provide practical advantages over microgravity experiments and

simplify the production of shells, their imaging, and the collection of
large amounts of data. At the same time, the microgravity experimen-
tal facilities on the International Space Station will soon allow for a
larger number of atoms and better control, enabling the production of
fully closed 2D condensate shells. This can open the way to the explo-
ration of vortex dynamics in the ellipsoidal geometry.23

The introduction of external fields and interactions, such as spin–
orbit coupling in curved geometries, could lead to exotic vortex states
with non-trivial topology.82,83 The study of vortex matter on topologi-
cally non-trivial surfaces, like M€obius strips, might uncover unusual
superfluid phases and symmetry-breaking patterns.9,84 Studies of the
quantum Hall effect on curved surfaces could bridge the gap between
flat and curved quantum systems, providing a new understanding of
quantum coherence in curved spaces.85 Moreover, the development of
advanced numerical simulations and topological field theories tailored
for curved geometries could significantly enhance our theoretical
understanding and predictive capabilities. These studies, stimulating
emerging experimental techniques to create and manipulate quantum
gases on designed curved surfaces, would not only test these theoretical
predictions but also open new ways to novel quantum technologies
based on the unique properties of curved-space quantum systems.36

Studies of the vortex excitations in curved geometries have
opened new prospects in various physical systems, well beyond atomic
BECs. Among the myriad hypotheses about the elusive nature, compo-
sition, and physical characteristics of dark matter (DM), the proposi-
tion that DM is composed of ultralight bosons, which assume the state
of BECs, emerges as a compelling solution.86 Previous investigations
have demonstrated the existence and stability of the vortex structures
in the BEC solitonic core, which can exist in the central regions of the

FIG. 6. (a) Snapshots at two moments, illustrating the evolution of the merging strongly elongated (prolate) toroidal condensates as described in Ref. 77. Shown are 3D isosurfa-
ces with constant condensate density, and (b) maps of the distribution of the density and condensate flows on the cylindrical surface of radius r0, with / representing the angu-
lar coordinate. A long-lived hybrid complex with cylindrical geometry emerges from the evolution of the condensate under the influence of weak dissipation. Blue (red) arrows
show the directions of vortex (antivortex) flows in the upper (lower) rings. Horizontal black lines represent Josephson vortex cores.
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galactic halos (see, e.g., Refs. 87–89). Future studies of the vortices in
the ultralight bosonic dark matter can involve analysis of the space–
time curvature and frame-dragging effects in the vicinity of rotating
super-massive black holes. Analogue physics offers a unique platform
for emulating inaccessible phenomena specific to curved space–time in
the vicinity of black holes, enabling their study within the controlled
environment of laboratory experiments.90 In perspective, analog simu-
lations of cosmological phenomena, such as the inflationary expansion
of the early Universe, using expanding superfluid shells, present a fasci-
nating avenue for connecting quantum fluid dynamics with
cosmology.91

We have studied the primary factors influencing vortex dynamics
in BECs within curved geometries, including dimensionality, topology,
non-constant curvature, and density inhomogeneity. Dimensionality
allows the formation of different types of excitations in curved
waveguides, with notable variations between quasi one-dimensional
and three-dimensional systems, as was pointed out in Sec. II A.
Topologically, the contrast between toroidal and single-connected con-
figurations introduces distinct constraints that impact vortex stability
and behavior, as was highlighted in Secs. II B and IIC. The presence of
non-constant curvature, discussed in Sec. II A, adds complexity by cre-
ating spatially varying potential landscapes. Furthermore, density
inhomogeneities, such as those induced by weak links, result in local
variations that significantly affect vortex dynamics, as was illustrated in
Sec. II B. It is important that these effects can compete and interact.
For example, as was pointed out in Sec. II A, the toroidal topology
combined with curvature-induced gradient of the phase can signifi-
cantly modify dynamics and stability of the persistent current in the
ring-shaped condensate. Another example: density modulation, which
appears as the result of the curvature, can be smoothed out by varia-
tion of the potential profile, which smooth-out the density along the
waveguide, as was experimentally demonstrated in Ref. 52. Therefore,
competition and interplay between dimensionality, topology, non-
constant curvature, and density inhomogeneity drive the intricate
nature of vortex behavior in curved BECs, highlighting perspectives
for future research and applications in quantum technologies.
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